
 Visual Basic for Applications Tips
Prepared 05/09/94

 Visual Basic for Applications Tips

THE INFORMATION IN THE MICROSOFT KNOWLEDGE BASE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND.
MICROSOFT DISCLAIMS ALL WARRANTIES EITHER EXPRESSED OR IMPLIED, INCLUDING THE WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MICROSOFT CORPORATION OR
ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS, OR SPECIAL DAMAGES, EVEN IF MICROSOFT CORPORATION OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FORGOING
EXCLUSION OR LIMITATION MAY NOT APPLY. COPYRIGHT 1994 MICROSOFT CORP. ALL RIGHTS RESERVED

 Visual Basic for Applications Tips

 Visual Basic for Applications Tips
 Recursive Routines Possible in Excel Function Macros

 Spreadsheet Won't Visibly Update Behind Triggered Dialog Box
 Activating An Embedded Chart Using A Macro
 Using a Mouse to Enter References into a Custom Dialog Box
 Using GET.CELL with Type_num 15 in Excel
 Excel: =RESULT(8+64) Causes #VALUE! with 1-by-1 Array
 Excel: ASSIGN.TO.TOOL and ENABLE.TOOL Cause Macro Error
 Third-Party Vendors of Excel-Related Products
 Excel: Finding Open Applications that are DDE Capable
 XL5: Can't Link Edit Box to Worksheet Cell from Control Tab
 XL5: Cannot Use Name Box to Define 3-D Name

 XL5: Can't Use PrintOut When Custom Dialog Box Is Visible
 XL5: RemoveItem and RemoveAllItems Methods May Not Work
 XL5: Using SENDKEYS to Change Paper Source in Printer Setup
 XL5: Visual Basic Interprets mm:ss as Month Not Minutes
 XL5: Macro to Restore Tab Split Box to Default Position
 XL5: Excel 4.0 Menus Option Setting Not Saved
 XL5: Unlocked Cells Not Underlined With Protection Enabled
 XL5: Worksheet May Be Activated When Method Is Applied
 XL5: Using Visual Basic to Return Screen Elements
 XL5: Alert Function Does Not Beep in Excel Version 5.0
 XL5: Formatting Name of Months in All Capital Letters
 XL5: WORKBOOK.ACTIVATE() Returns Error If Sheet_Name Omitted

 XL5: Finding Default Printer and Port Settings
 XL5: Cannot Add Sheet After Last Sheet in a Single Action
 XL5: Error Unhiding Multiple Sheets in Visual Basic
 XL5: Disabling Microsoft Excel Control Menu Commands
 XL5: Continue Macro Execution While Playing a .WAV File
 XL5: Client Not Updated with Multiple Instances of Excel
 XL5: Macro to Print a Group of Files Located in Same Directory
 XL5: Determining Which DLLs Are Registered
 XL5: Visual Basic Procedure to Display Screen Metrics
 OLE Automation: GetObject Function with Filename Opens File
 XL5: Calculating Depreciation with the Production Method
 XL5: Visual Basic Procedure to Display System Resources

 XL5: Macros to Return Windows and System Directories Paths
 XL5: Function to Compute Average Without High and Low Values
 XL5: Macro to Toggle spooler= Line of WIN.INI
 XL5: Distinguishing Sheet Types In Visual Basic
 XL5: ChDir May Fail When Changing to a Root Directory
 XL5: Can't Run Macros That Use File Functions Add-in Functions
 XL5: How to Manipulate Macro Operation With Key Strokes

 XL5: No Visual Basic Method for SET.UPDATE.STATUS
 XL5: Can't Access File Opened as Read-Only in Visual Basic
 XL5: GP Fault When Macro Closes Its Own Workbook
 XL5: Selection.Rows.Count May Return Incorrect Result
 XL5: Error Getting the Value of a Name in Visual Basic

 XL5: Range.EntireRow May Return Incorrect Result
 XL5: Running Subroutines and Macros from Visual Basic
 XL5: Macro to Add a Number to a Selected Cell
 XL5: OLE Automation Err Msg: Method Not Applicable
 Menus.Count Returns Different Number When Workbook Maximized
 XL5: Manually Recalculating a Single Cell or Range
 XL5: Cells.Find Returns Error When No Match Found
 XL5: Visual Basic Macro to Hide and Restore All Toolbars
 XL5: Macro to Open the Most Recently Used File
 XL5: All PageSetup Settings Are Recorded into Macro
 XL5: Function Subroutines Can Show Message Boxes
 XL5 Err Msg: "Not Enough Memory" With Indirect Defined Names

 XL5: Verifying the Value of a Check Box
 XL5: Cannot Use Array As Source Argument with SeriesCollection
 XL5: Branching to Other Sections of Code with GoTo and Call
 XL5: Visual Basic and the Microsoft Excel Version 4.0
 XL5: Using Visual Basic to Exit Windows From Within Excel
 XL5: Update Remote References Option Selected by Default
 XL5: Can't Use Line Continuation Character in Some Locations
 XL5: List of the Files You Need to Run Microsoft Excel
 XL5: GP Fault If REFTEXT() Refers to Closed Workbook
 XL5: Macro to Find Directory in WIN.INI for an Application
 XL5: Visual Basic Example to Delete Blank Rows
 Computing Periodic Annual Interest Rate in Microsoft Excel

 XL5 Err: "Call to Undefined Dynalink" in Visual Basic Macro
 XL5 OLE Automation: Workbook Hidden Using GetObject Function
 XL5: Calculating Elapsed Time for a Visual Basic Procedure
 XL5: Can't Define Name with Same Name as a Subroutine
 XL5: Borders Method Applies Inconsistent Format
 XL5: CreateObject Function Starts Invisible Instance of Excel
 Excel: Creating Macros for Different Language Versions
 XL5: Hiding Button Objects with Visual Basic for Applications
 XL5: Determining which Items Are Selected in a List Box
 XL5: Application.OperatingSystem Returns 3.10 in WFW 3.11
 XL5: FOR Behaves Differently in Visual Basic Than in 4.0 Macro
 XL5 Err Msg: "Not Enough Stack Space to Run Macro"

 XL5: Controls in Dialog Box May "Snap" to Preset Values
 XL5: Can't Use Replace Command to Search for Blank Cells
 Selection.Cells with Nonadjacent Selection Returns Single Cell
 XL5: Cannot Print Multiple Copies to DeskJet 500C/550C Driver

 XL5: "Cannot Find Macro..." Using Run Method with Add-In Macro
 XL5: 'For Each Item in List' Doesn't Work
 XL5: Getting Windows Status Information from Windows API
 XL5: Using the Windows OpenFile Dialog Box
 XL5: Incorrect Use of "Is" Function Causes GP Fault
 XL5: OLE Automation Dialog Box Redrawn Incorrectly
 XL5: Setting Status Bar Text and ToolTips for Toolbar Buttons
 Excel AppNote: Built-in Constants in VB, Applications Edition

 XL5: Can't Use Group Edit Mode on Multiple Workbooks
 XL5: Can't Use Dialog Method to Bring Up Spelling Dialog Box
 XL5: Dialogs(xlDialogFont) Changes Normal Style
 XL5: OLE Automation, Can't Use Named Arguments in Visual Basic
 XL5: Can't Print Collated Copies
 XL5: "Invalid Procedure Call" with SendKeys Statement
 XL5: Docerr: VB for Apps Sub Example Incorrect
 XL5: Visual Basic Macro to Concatenate Columns of Data
 XL5: User-Defined Function to Put Sheet Name in a Cell
 XL5: Using Visual Basic to Multiply Cell Contents
 XL5: Caption Property of Menu Contains Ampersands
 XL5: Visual Basic Code to Use Instead of DIRECTORIES()

 XL5: Shell Function Doesn't Accept Built-in Constants
 XL5: Visual Basic Nested Case Statement Example
 XL5: Can't Select Label Attached to Filled Radar Series
 XL5: Recorded AutoFit Selection Changes Entire Row or Column
 XL5: Error Message Using Name of Constant with Show Method
 XL5: OLE Automation Error Using Quit Method with GetObject
 XL5: Command to Create Add-in File from Visual Basic Module
 XL5:    Can't Set Value Property in For-Each with Variant Type
 How to Manipulate Object's Properties w/ Property Set/Let/Get
 Line Numbers Greater Than 65529 Not Supported
 Null Character Truncates String in Visual Basic
 PRB: Error When Excel VBA Proc & Implicit Var Have Same Name

 PRB: Sub Name Can't Be Valid Cell Reference in Excel VBA
 BUG: VBA FileCopy Updates Destination File's Date & Time Stamp
 BUG: VBA Shell Returns Invalid Proc Call Even If App Starts
 "Invalid Data Format" Referencing File that Contains Procedure
 How to Dimension a Variable as Name Type
 Using Square Brackets in a Visual Basic Procedure
 BUG: SendKeys Fails to Send Right Brace Character in Excel VBA
 BUG: Is Operator in VBA Incorrectly Evaluates Excel Objects

Recursive Routines Possible in Excel Function Macros
Article ID: Q47949
--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 2.x, 3.0, 4.0, 5.0
--

SUMMARY
=======

A Microsoft Excel function macro can call itself in a recursive fashion to
compute an answer. For example, the following macro computes the factorial
of a number:

 A1: factorial
 A2: =ARGUMENT("parameter")
 A3: =IF(parameter=1,RETURN(1))
 A4: =RETURN(parameter*factorial(parameter-1))

Note: This function macro is provided only as an example. Microsoft Excel
has a built-in FACT() function that computes the factorial of a number more
efficiently.

The macro must be defined as a function macro.

If you are using Microsoft Excel version 5.0, you can use the equivalent
macro in Visual Basic for Applications:

 Function factorial(parameter As Integer) As Integer
 If parameter = 1 Then
 factorial = 1
 Else
 factorial = parameter * factorial(parameter - 1)
 End If
 End Function

Additional reference words: 2.0 2.00 2.01 2.1 2.10 3.0 3.00 4.0 4.00 5.0
5.00 VBAppcode

Spreadsheet Won't Visibly Update Behind Triggered Dialog Box
Article ID: Q68508
--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 3.0, 4.0, 5.0
--

SUMMARY
=======

If a macro is allowed to continue execution by the use of a triggered
dialog box (which means the dialog box will be allowed to remain on the
screen as the macro continues), any changes made by the macro to the
document behind the custom dialog box will not be displayed. A triggered
dialog box has the same effect as ECHO(FALSE) before using a macro to make
changes to a spreadsheet. That is, the changes are actually made, but the
screen is not updated (to save time).

If you want to display updating as it takes place, you must use an
ECHO(TRUE) statement before statements in the continuing macro code that
make changes to the active document. However, this will cause the dialog
box to be erased from the screen until it is redisplayed by another
DIALOG.BOX statement.

The information above also applies to version 5.0 if you are working with
version 4.0 macros. Visual Basic for Applications code allows a spreadsheet
to update while a Dialog box (created from a Dialog sheet) is displayed.

REFERENCES
==========

"User's Guide 2," version 4.0, pages 280-281
"User's Guide," version 3.0, page 639

Additional reference words: 3.0 3.00 4.0 4.00 5.0 5.00

Activating An Embedded Chart Using A Macro
Article ID: Q71539
--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 3.0, 4.0, 5.0
--

SUMMARY
=======

You can create an embedded chart object using the chart tool on the
Standard Toolbar. You must create an embedded chart in the instance of
Microsoft Excel that contains the supporting data. The embedded chart is
then dynamically linked to this data.

To add a legend, title, etc. to your embedded chart, you must activate the
chart object. You can do this by double-clicking anywhere on the chart
object. In Microsoft Excel version 5.0, when you activate an embedded
chart, a hatched border appears around the chart and you can format the
chart elements.

In Microsoft Excel versions 3.0 and 4.0, when you activate an embedded
chart, a copy of the chart object opens in a new window. This new window
displays the chart menu bar, allowing you to format the chart elements. The
embedded chart on the worksheet immediately reflects all changes made to
the copy in the window.

You can also activate an embedded chart object using a macro as in the
following examples:

Microsoft Excel version 5.0 Visual Basic Example
--

 ' Dimension variable
 Dim Data As String
 ' Assign variable Data to selected cells
 Data = Selection.Address
 ' Create embedded chart from selected data
 ActiveSheet.ChartObjects.Add(82.8, 76.8, 321.6, 100.2).Select
 ActiveChart.ChartWizard Source:=Range(Data)
 ' Activate embedded chart for editing
 Selection.Activate

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line

to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Microsoft Excel versions 3.0 and 4.0 Macro
--

 A1: =COPY()
 A2: =CREATE.OBJECT(5,!B5,5,5,!D15,5,5)
 A3: =DEFINE.NAME("Temp")
 A4: =GET.NAME("!Temp")
 A5: worksheet=GET.DOCUMENT(1)
 A6: =UNHIDE(worksheet&" "&A2)
 A7: =RETURN()

This macro does the following:

1. Copies the selected data for the chart from the worksheet

2. Creates the embedded chart

3. Assigns the name "Temp" to the chart object

4. Gets the definition of the name "Temp"

5. Assigns the name "worksheet" to the name of the worksheet

6. Activates the chart object

Microsoft provides macro examples for illustration only, without warranty
either expressed or implied, including but not limited to the implied
warranties of merchantability and/or fitness for a particular purpose. This
macro is provided 'as is' and Microsoft does not guarantee that the
following code can be used in all situations. Microsoft does not support
modifications of that code to suit specific customer requirements.

REFERENCES
==========

"User's Guide," version 4.0, page 394-399, 435

"User's Guide," version 3.0, page 325, 391-394

"Function Reference," version 4.0, pages 65-66, 77-79, 196, 201, 441

"Function Reference," version 3.0, pages 36, 40, 107, 111, 241

Additional reference words: 3.0 3.00 4.0 4.00 5.0 5.00

Using a Mouse to Enter References into a Custom Dialog Box
Article ID: Q74267
--
The information in this article applies to

 - Microsoft Excel for Windows, versions 3.0, 4.0, 5.0
 - Microsoft Excel for OS/2 version 3.0
--

SUMMARY
=======

Entering cell references in a custom dialog box with a mouse requires a
movable dialog box. In version 3.0 and 4.0 this is done by typing a title
in the first row of the text column in the dialog box definition table. In
version 5.0, using Visual Basic for Applications, dialog boxes are moveable
regardless of whether they have a title.

MORE INFORMATION
================

A Reference Edit box allows references to be entered into the dialog box.
Cell references are manually entered by typing directly into the edit box.
After clicking the Reference Edit box, nothing can be selected outside of
the dialog box if the dialog is not movable.

By making the dialog box movable, cells on the worksheet can be selected.
After clicking the Reference Edit box, you can then manually select the
desired range of cells with your mouse. Menus and cells in nonactive
documents can also be chosen if you want to enter information into the
dialog box.

To create a movable custom dialog box, type a title in the first row of the
text column in the dialog box definition table. This is the sixth column.
The title will then appear in the title bar of your dialog box, which can
then be used to move the dialog box.

REFERENCES
==========

"User's Guide 2," version 4.0, pages 270-282
"User's Guide," version 3.0, pages 631-641

Additional reference words: 3.0 3.00 4.0 4.00 4.0a 4.00a 5.0 5.00 moveable

Using GET.CELL with Type_num 15 in Excel
Article ID: Q75622
--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 2.x, 3.0, 4.0, 5.0
 - Microsoft Excel for OS/2, versions 2.2, 3.0
--

SUMMARY
=======

The GET.CELL macro function with type number 15 returns TRUE or FALSE,
depending on whether the selected cell has been hidden by selecting
Cell Protection from the Format menu and checking the Hidden check
box. This function does not test to see whether the cell has been
hidden using the Row Height or Column Width commands in the Format
menu.

MORE INFORMATION
================

Formatting cell protection to hidden prevents a selected cell's
formula from being displayed or changed in the formula bar.
GET.CELL(15) will return TRUE if the cell protection is formatted as
hidden in this manner. GET.CELL(15) does NOT test for columns or rows
that have been hidden by choosing the Row Height or Column Width
command from the Format menu and choosing the Hide button. You can use
GET.CELL(16) and/or GET.CELL(17) to test for hidden rows or columns.

For help with GET.CELL in Microsoft Excel 5.0, from the Help menu, choose
Contents, then select Reference Information. Select Microsoft Excel Macro
Functions Contents, then choose Alphabetical List of Macro Functions and
scroll down the list until you reach GET.CELL.

In Microsoft Excel version 5.0, you can also use Visual Basic for
Applications code to confirm whether an active cell is in a hidden row or
hidden column.

 Sub testhiddenrow()
 hiddenrow = Rows(ActiveCell.Row).Hidden
 MsgBox hiddenrow
 End Sub

 Sub testhiddencolumn()
 hiddencol = Columns(ActiveCell.Column).Hidden
 MsgBox hiddencol
 End Sub

REFERENCES
==========

Online Help, version 5.0
"Function Reference," version 4.0, page 191-194
"User's Guide," version 3.0, page 564

"Function Reference," version 3.0, page 103

Additional reference words: 2.0 2.00 2.01 2.1 2.10 2.2 2.20 2.21 3.0 3.00
4.0 4.00 5.0 5.00 VBAppCode

Excel: =RESULT(8+64) Causes #VALUE! with 1-by-1 Array
Article ID: Q84076
--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 3.0, 4.0, 5.0
 - Microsoft Excel for the Macintosh, version 3.0
 - Microsoft Excel for OS/2, version 3.0
--

SYMPTOMS
========

When you are using RESULT() within a function macro in Microsoft
Excel, specifying a return value of 72 (8+64=reference and array) will
cause the function macro to return #VALUE! when specifying a 1-by-1
return array (one cell).

Note: this also applies to version 5.0 when you use version 4.0
macrosheets. It does not apply to Visual Basic for Applications modules.

WORKAROUNDS
===========

 - In most cases, the DEREF() is not necessary. The problem will be
 corrected if you stop using it.

 - Use =RESULT(75). This will specify result types 1, 2, 8 and 64
 (number, text, reference and array).

Steps to Reproduce Problem

Type the following into a macro sheet, and define cell A1 as a
function macro:

 A1: =RESULT(72)
 A2: {=RETURN(DEREF(A1))}

Note: the curly brackets are not typed into cell A2, the contents of
A2 are entered as an array formula. In Microsoft Excel for Windows, use
CTRL+SHIFT+ENTER. In Microsoft Excel for the Macintosh, use COMMAND+RETURN.

In a worksheet, paste the function into a cell. Since the array only
has one element, it is not necessary to enter the formula as an array
formula. The result of the function will be #VALUE!. This does not
occur on arrays larger than 1-by-1.

REFERENCES
==========

"Function Reference" for Windows, version 4.0, page 361
"Function Reference" for the Macintosh, version 3.0, pages 198-199
"Function Reference" for Windows, version 3.0, pages 198-199

Additional reference words: 3.00 3.0 4.00 4.0 5.00 5.0 mpf

Excel: ASSIGN.TO.TOOL and ENABLE.TOOL Cause Macro Error
Article ID: Q87540
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 4.0, 5.0
 - Microsoft Excel for the Macintosh, version 4.0
--

SUMMARY
=======

Microsoft Excel assigns a position to each tool and gap on a toolbar. When
the ENABLE.TOOL function or the ASSIGN.TO.TOOL function tries to utilize a
position number corresponding to a gap, a macro error results. In version
5.0, this information applies to macrosheets only, not Visual Basic for
Applications modules.

MORE INFORMATION
================

The ENABLE.TOOL function allows you to selectively enable and disable tools
on toolbars within Microsoft Excel. Disabled tools have the same appearance
as enabled tools, but they do not respond to your actions until re-enabled.

ASSIGN.TO.TOOL function is equivalent to choosing the Assign To Tool
command from the Macro menu or from the Tools shortcut menu. It assigns a
macro to be run when a tool is clicked with the mouse. For detailed
information about the Assign To Tool command, see online Help.

Attempting to use these functions on a position in a toolbar that is
occupied by a gap, results in the following error message, where Macro
Sheet Name refers to the macrosheet where the function is located and Cell
Reference specifies the cell in the macro where the command is located:

 Macro error at cell: <Macro Sheet Name>!<Cell Reference>

To avoid this error, use the ENABLE.TOOL function and the ASSIGN.TO.TOOL
function in conjunction with the GET.TOOL function. The following line
checks to see if the position number (5) to be enabled is a tool or a gap.
If it is a tool, it enables the tool (or assigns the macro). Otherwise, it
does nothing:

=IF(GET.TOOL(1,"SampleToolbar",5)=0,,ENABLE.TOOL("SampleToolbar",5,TRUE))

REFERENCES
==========

"Microsoft Excel Function Reference," version 4.0, pages 28, 131, 206

Additional reference words: 4.0 4.00 4.0a 4.00a 5.0 5.00 buttons mpf

Third-Party Vendors of Excel-Related Products
Article ID: Q90508

--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 3.0, 4.0, 4.0a, 5.0
 - Microsoft Excel for the Macintosh, version 4.0
--

SUMMARY
=======

The following is a list of third-party vendors who provide additional
tools, macros, templates, books, and training products for use with
Microsoft Excel. Some of these vendors may offer add-in macros and
templates for earlier versions of Microsoft Excel and for both Microsoft
Excel for Windows and Microsoft Excel for the Macintosh.

For more information, please call the vendor listed.

The products mentioned here are manufactured by vendors independent of
Microsoft; we make no warranty, implied or otherwise, regarding these
products' performance or reliability.

MORE INFORMATION
================

These third-party vendors provide additional tools, macros, and templates
for Microsoft Excel:

Tools, Templates, and Macros
============================

 Real estate templates and macros
 A la Mode, Inc.
 (801) 268-6911
 4547 S. 700 E.
 Suite 200
 Salt Lake City, UT 84107.

 Financial and investment planning
 Apropos Software, Inc.
 64 Hillview Avenue
 Los Altos, CA 94022

 DIF to SYLK conversions
 Template Systems, Inc.
 (617) 533-2203
 7 Industrial Park Rd.
 Medway, MA 02053.

 Personal income tax templates and schedules
 James Associates
 (303) 484-5296

 1525 East County Road 58
 Fort Collins, CO 80524.

 Real estate and personal finance templates
 Real Data, Inc.
 (203) 255-2732
 P.O. Box 691
 Southport, CT 06490.

 Individual Software Inc.
 5870 Stoneridge Drive, #1
 Pleasanton, CA 94588
 (415) 734-6767
 Customer Support: (800) 822-3522

The following venders also provide custom macros for Microsoft Excel:

 Add-ins, macros, templates, and a few engineering products.
 Heizer Software
 1941 Oak Park Blvd., Suite 30
 P.O. Box 232019
 Pleasant Hill, CA 94523
 (510) 943-7667 Main Office
 (800) 888-7667 Order Line
 (510) 943-6882 Fax

 The Baarnes Utilities for MS Excel, Custom add-ins
 and Expert Corporate Development Using Microsoft Excel
 Baarns Consulting Group, Inc.
 (800)377-XCEL (9235)
 12807 Borden Avenue
 Sylmar, CA 91342.

 @Risk for Excel: A risk analysis tool.
 Palisade Corporation
 31 Decker Road
 Newfield, NY 14867 USA
 (607) 277-8000

 Evolver: An all-purpose problem solver.
 Axcellis
 4668 Eastern Ave. N.
 Seattle, WA 98103-6932 USA
 (206) 632-0885 Customer line
 (206) 632-3681 Fax

 Statistics: A set of complex statistical analysis tools.
 Spreadware
 82521 Market Ave. #110
 Indio, CA 92201 USA
 (619) 347-2365

 Crystal Ball: What-if analysis tools.
 Decisioneering Inc.
 1380 Lawrence Street, Suite 610
 Denver, CO 80204 USA
 (303) 292-2291

 Braincel: Tools for forecasting using neural network
 technology.
 Promised Land Tech. Inc.
 900 Chapel St. Suite 300
 New Haven, CT 06510
 (203) 562-7335

Training Products and Books
===========================

These vendors provide additional training products and books for Microsoft
Excel:

 Personal Training Systems
 Training products covering Excel fundamentals, business
 graphing, databases, linking spreadsheets and macros
 (408) 559-8635
 P.O. Box 54240
 San Jose, CA 95154.

 The Cobb Group
 Monthly journal and books for Microsoft Excel users
 (800) 223-8720 or (502) 425-7756
 P.O. Box 24480
 Louisville, KY 40224.

 "Microsoft Excel Visual Basic for Applications Reference"
 Microsoft Corporation
 $24.95 ($33.95 Canada)
 ISBN 1-55615-624-3

 "Microsoft Excel Visual Basic for Applications Step by Step"
 Reed Jacobson,
 $29.95 ($39.95 Canada)
 ISBN is 1-55615-589-1

Microsoft Press books can be found in bookstores everywhere, through
CompuServe electronic mail (type GO MSP), or you can order direct by
calling (800) MSPRESS. In Canada, call (416) 293-8464, extension 340.

If you are outside the United States, contact the Microsoft subsidiary for
your area. To locate your subsidiary, call Microsoft International Customer
Service at (206) 936-8661.

 Excel 5 Courseware Developer's Kit (CDK)
 Microsoft Corporation
 $895 US ($1195 Canada)
 (Win) ISBN 1-55615-719-3

Includes license agreement (grants permission to customize the
student book, the student practice files, and the instructor outline
files for reproduction), eight disks (student practice files and
student book on disk), Instructor's guide, certificate of completion
master copy, hardcopy overhead and handout masters, and a template for
creating your own lessons

 Microsoft Excel 5 Software Development Kit
 $49.95 ($69.95 Canada)
 ISBN 1-55615-632-4
 (Available in April)

Additional reference words: 2.00 2.01 2.10 3.00 4.00 4.00a 5.00 macro
developer phone writer books 3rdparty 3pty telephone isv phoneref third
party macros programs

Excel: Finding Open Applications that are DDE Capable
Article ID: Q102362
--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 2.x, 3.0, 4.0, 4.0a, 5.0
 - Microsoft Excel for the Macintosh, versions 3.0, 4.0
--

SUMMARY
=======

In Microsoft Excel, you can find which of your currently open applications
are capable of dynamic data exchange (DDE) by using the following macro
function:

 =INITIATE("","")

This function will display a DDE dialog box that will list all of the open
applications and topics to which Microsoft Excel can open a DDE channel.
You can then use other DDE commands such as EXECUTE() and SEND.KEYS() to
control the other application.

In Microsoft Excel version 5.0, you can use the following Visual Basic for
Applications procedure to determine which of your open applications are
capable of DDE:

 SUB Initiate_DDE ()
 ChanNum = Application.DDEInitiate("", "")
 End Sub

NOTE: Microsoft Excel for the Macintosh requires system software version
7.0 or later for this and other DDE functions to work.

REFERENCES
==========

"Function Reference," version 4.0, page 240

Additional reference words: 2.0 2.00 2.01 2.1 2.10 3.0 3.00 4.0 4.00 4.0a
4.00a 5.0 5.00 mpf VBAppcode

XL5: Can't Link Edit Box to Worksheet Cell from Control Tab
Article ID: Q105110

The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, although you can establish a link
between some types of dialog box controls and a worksheet cell, edit
boxes do not have this capability. To allow the value of an edit box
to appear in a cell, you must create a Visual Basic procedure.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following Visual Basic procedure creates the equivalent of a cell
link between an edit box and cell A1 on a worksheet. The subroutine should
be assigned to the edit box by choosing Assign Macro from the Tools menu.

'---
Sub EditBox1_Change()
 'Enter the following two lines of code as one single line:
 Worksheets("Sheet1").Cells(1, 1).Value =
 ActiveDialog.EditBoxes("Edit Box 1").Text
End Sub
'---

In this example the name of the edit box is "Edit Box 1," the name of
the worksheet "Sheet1". This example assumes that all dialog sheets, Visual
Basic modules, and worksheets are located in the same workbook.

This sample code runs whenever the content of Edit Box 1 is changed.
When this happens, the code changes the value of cell A1 to be equal

to the text property of Edit Box 1.

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, Chapter 11, "Linking
Controls to Worksheets," and "Assigning Code to Controls and Dialog
Boxes"

Additional reference words: 5.00 spin scroll button list

XL5: Cannot Use Name Box to Define 3-D Name
Article ID: Q105770

--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

Page 144 of the "User's Guide," version 5.0, states that you can
define a name with a 3-D reference. While this information is correct,
note that you cannot use the name box (on the Formula bar) to define
a 3-D name.

WORKAROUND
==========

To define a 3-D name, specify the 3-D reference in the Refers To box
in the Define Name dialog box (from the Insert menu, choose Name, and
choose Define).

MORE INFORMATION
================

To manually create a 3-D name

The following example assumes you have a workbook that contains five
worksheets: Sheet1, Sheet2, Sheet3, Sheet4, and Sheet5, appearing in
that order.

To create a 3-D defined name "TestRange" that refers to the range
A1:D10 on sheets Sheet1 through Sheet4:

1. With a single worksheet tab selected, choose Define from the
 Insert menu, and choose Name.

2. In the Names In Workbook box, type "TestRange" (without the
 quotation marks).

3. In the Refers To box, type "=Sheet1:Sheet4!A1:D10" (without the
 quotation marks).

4. Choose OK.

To create a 3-D name with a Visual Basic procedure
--

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,

including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided "as is" and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line-
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

To create the 3-D name "TestRange" in Visual Basic, you could use a
procedure similar to the following:

' Enter the following two lines of code as one single line and remove the
' underline character:
ActiveWorkbook.Names.Add Name:="TestRange", _
 RefersToR1C1:="=Sheet1:Sheet4!R1C1:R10C4"

REFERENCES
==========

"User's Guide," version 5.0, pages 132, 136, 144

Additional reference words: 5.00 define.name

XL5: Can't Use PrintOut When Custom Dialog Box Is Visible
Article ID: Q105876
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

Because of the way in which Visual Basic code and custom dialog boxes
interact in Microsoft Excel version 5.0, it is not possible to use the
PrintOut method, which allows you to print a document, or the PrintPreview
method, which allows you to print preview a document, while a custom dialog
box is visible on the screen. Instead, you must use a method called
"tunneling" to remove the dialog box, perform your print action, and
redisplay the dialog box. The following information discusses methods that
you can use to accomplish this task.

MORE INFORMATION
================

In Microsoft Excel version 5.0, you can use the PrintOut method to send a
document to your printer. For example, to print a worksheet called Sheet1,
you would use the command:

 Worksheets("Sheet1").PrintOut

When a custom dialog box is visible on the screen, if your macro uses the
PrintOut method, you may receive the error message:

 PrintOut method of Worksheet class failed

 -or-

 Runtime error 1004
 Printout Method of sheets class failed

To use the PrintOut method, you must first hide or dismiss all custom
dialog boxes.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from

one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

This Visual Basic code example uses tunneling to display a dialog box, hide
the dialog box before it prints a worksheet, and then redisplay the dialog
box when the print operation is complete.

This example assumes that you have a dialog sheet (Dialog1) and a worksheet
(Sheet1) that are located in the same workbook. The dialog sheet contains
two buttons: DoneButton and PrintButton.

Before executing the macro you need to assign the appropriate macros to the
DoneButton and the PrintButton. To do this, follow these steps:

1. Activate the dialog sheet.
2. Select the DoneButton.
3. From the Tools menu choose Assign Macro.
4. Select the DoneButton_Click macro and choose OK.

To assign the PrintButton_Click macro to the PrintButton, repeat steps 1
through 4 and substitute PrintButton for DoneButton and PrintButton_Click
for DoneButton_Click.

To run the example, position the cursor in the line that reads "Sub
MainMacro()" and either press the F5 key or choose Start from the Run menu.

'---
Option Explicit
Public DoneFlag As Integer, PrintFlag As Integer

Sub MainMacro()
 PrintFlag = 0 'initialize PrintFlag
 DoneFlag = 0 'initialize DoneFlag

 'While the DoneFlag does not equal 1 (which will only occur if the
 'DoneButton is clicked), continue to loop through the Subroutine.

 Do
 If PrintFlag = 1 Then 'if the PrintFlag is set, then
 Worksheets("Sheet1").PrintOut 'print Sheet1 and
 PrintFlag = 0 'reset the PrintFlag
 End If
 DialogSheets("Dialog1").Show 'display the dialog box
 Loop Until DoneFlag = 1 'loop until DoneButton clicked
End Sub

Sub DoneButton_Click()
 DoneFlag = 1 'set the DoneFlag
 DialogSheets("Dialog1").Hide 'hide the dialog box
End Sub

Sub PrintButton_Click()
 DoneFlag = 0 'ensure DoneFlag set to 0

 PrintFlag = 1 'set the PrintFlag
 DialogSheets("Dialog1").Hide 'hide the dialog box
End Sub
'---

When either of the DoneButton or PrintButton buttons are activated, the
appropriate subroutines (DoneButton_Click or PrintButton_Click) are run:
within each subroutine, the Dialog1 dialog box is hidden and a flag
(DoneFlag or PrintFlag) is set to 1. The MainMacro subroutine then resumes
and loops back: if PrintFlag equals 1, the macro prints the worksheet and
redisplays the dialog box; if DoneFlag equals 1, the macro exits the loop
and ends the macro.

In this way, the PrintOut method is only executed if the Dialog1 dialog box
is not visible on the screen, and the dialog box will be redisplayed until
you exit the loop by activating the DoneButton.

Additional reference words: 5.00

XL5: RemoveItem and RemoveAllItems Methods May Not Work
Article ID: Q105877

--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, the RemoveItem and RemoveAllItems
methods cannot be used to remove items from a list box if the list box
is linked to a range on a worksheet or a Microsoft Excel 4.0 macro
sheet.

This is by design in Microsoft Excel version 5.0.

MORE INFORMATION
================

In Microsoft Excel 5.0, when you use a Visual Basic module to create a
list box, there are two ways you can add items to the list:

 - Use the AddItem method to add items to the list box.

 -or-

 - Do the following to link a worksheet or a Microsoft Excel 4.0 macro
 sheet range to the list box by setting an input range for the list
 box.

 1. In the dialog sheet, select the list box.

 2. From the Format menu, choose Object.

 3. Select the Control tab.

 4. In the Input Range edit box, enter the range where your list
 items are stored (for example, Sheet1!A1:A10).

 5. Choose OK to accept the change.

If your list box is linked to a worksheet or a Microsoft Excel 4.0
macro sheet range, you cannot use the RemoveItem or RemoveAllItems
methods to remove items from the list. Attempting to do so will result
in the following error message:

 RemoveItem method of ListBox class failed

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for

illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

This Visual Basic code example displays a dialog box. When you select
one button, it hides the dialog box, removes the first item from the
list in the dialog box, and redisplays the dialog box. Another button
ends the procedure.

You need to use this example ONLY if your list box is linked to cells on
a worksheet or a Microsoft Excel 4.0 macro sheet: lists created using
AddItem can use the RemoveItem and RemoveAllItems methods to remove
items from a list.

This example assumes that you have a dialog sheet (Dialog1) and a
worksheet (Sheet1) both contained in the same workbook. The dialog
sheet contains two buttons, DoneButton and RemoveButton, and a list
box, List Box 1. The worksheet contains a list of items in cells
A1:A10. The list box has its Input Range set to Sheet1!A1:A10.

To run the example, position the cursor in line the line which reads
"Sub MainMacro()" and either press the F5 key or choose Start from the
Run menu.

'---
Option Explicit
Public DoneFlag As Integer

Sub MainMacro()
 DoneFlag = 0 'initialize DoneFlag

' While the DoneFlag does not equal 1 (which will only occur if the
' DoneButton is clicked), continue to loop through the Subroutine.

 Do
 DialogSheets("Dialog1").Show 'display the dialog box
 Loop Until DoneFlag = 1 'loop until DoneButton clicked
End Sub

Sub RemoveButton_Click
 DoneFlag = 0 'ensure DoneFlag set to 0
 DialogSheets("Dialog1").Hide 'hide the dialog box

' The following line deletes cell A1 ["Cells(1, 1)"] from worksheet

' Sheet1.

 Worksheets("Sheet1").Cells(1, 1).Delete
End Sub

Sub DoneButton_Click
 DoneFlag = 1 'set the DoneFlag
End Sub
'---

When either of the DoneButton or RemoveButton buttons are activated,
the appropriate subroutines (DoneButton_Click or RemoveButton_Click)
are run: in the RemoveButton subroutine, an item is deleted from the
list, which is automatically updated, and in the DoneButton
subroutine, a flag which indicates that you want to end the macro is
set.

The MainMacro subroutine then resumes and proceeds to either loop back
upon itself if DoneFlag equals 0 (if the RemoveButton was activated)
or exit the loop and end the macro (if the DoneButton was activated).

Note that this example uses the Delete method to eliminate a cell from
the list. If you want to redefine the list without deleting the cell,
you will need to use the ListFillRange property to determine the
proper range to use for your list.

Note also that when you use this method to remove items from a list,
you must hide and reshow the dialog box in order for the list to
appear correctly on the screen. This is accomplished by using the
DialogSheets("Dialog1").Hide command in the RemoveButton_Click
subroutine.

Additional reference words: 5.00

XL5: Using SENDKEYS to Change Paper Source in Printer Setup
Article ID: Q105878
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

The following Microsoft Excel, version 5.0, Visual Basic macro will
change the paper source on the Hewlett-Packard (HP) LaserJet 4/4M to
lower tray.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Visual Basic Macro

Sub HP4_Paper_Source()

 Application.ActivePrinter = "HP LaserJet 4/4M on LPT1:"
 SendKeys "%(f)(p)(r)%(s)%(s){pgup}{down}{down}
 {down}{down}~~~"

End Sub

This macro sends key commands to the Printer Setup dialog box. The
following is an explanation of the string used in the SendKeys
function:

 This command Performs this action
 --

 %(f)(p)(r) Chooses Printer Setup in the Print dialog
 %(s) Chooses Setup in the Printer Setup dialog
 %(s) Chooses Paper Source in the HP 4/4M Setup dialog
 {pgup} Moves Paper Source selection up
 {down} Moves Paper Source selection down

MORE INFORMATION

================

In the Printer Setup dialog box, there is no accelerator key
combination that will directly select a paper source such as lower
tray. Instead, the arrow key should be used to select from the list of
available sources. For example, on the HP LaserJet 4/4M there are six
possible choices for the paper source:

 - Auto Select
 - MP Tray
 - Paper Cassette
 - Manual Feed
 - Lower Cassette
 - Envelope Feeder

Because the current paper source selection is not known before
execution of the macro, use the {pgup} command to select the first
item in the Paper Source list. This will guarantee that Auto Select is
chosen. Four DOWN ARROW keystrokes will select the lower cassette.

NOTE: This macro may work for other printers or may require a
different sequence of keystrokes depending on the printer driver.

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, Chapter 6

Additional reference words: 5.00 print

XL5: Visual Basic Interprets mm:ss as Month Not Minutes
Article ID: Q105954
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

When a date format is evaluated in a Visual Basic module, it may be
changed from months to minutes.

The following macro command will return months followed by seconds:

 MsgBox Format(Now, "mm:ss")

While Microsoft Excel uses the format mm:ss for minutes and seconds,
Visual Basic uses the format nn:ss for minutes and seconds.

This issue will not be seen by using the format "h:mm:ss". Visual Basic
will interpret this correctly as hours:minutes:seconds, as this is a less
ambiguous format.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Example

The following Visual Basic macro creates a message box with three
numbers that display the system date and time. The first number is
formatted as month and seconds, while the second two numbers display
minutes and seconds.

Sub My_string()

 Dim Msg, NL
 NL = Chr(10)
 Msg = Format(Now, "mm:ss") & NL 'Returns "Month & Seconds"
 Msg = Msg & Format(Now, "nn:ss") & NL 'Returns "Minutes & Seconds"
 Msg = Msg & Application.Text(Now, "mm:ss") 'Returns "Minutes & Seconds"
 MsgBox Msg
End Sub

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, pages 111-113

For more information about User Defined Date/Time Formats, choose the
Search button in Visual Basic Reference Help and type:

 Formatting Times

Additional reference words: 5.00

XL5: Macro to Restore Tab Split Box to Default Position
Article ID: Q106009
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, it is possible to adjust the space
allocated for displaying sheet tabs and the horizontal scroll bar by
moving the tab split box. The tab split box is located between the
sheet tabs and the horizontal scroll bar.

This article contains some sample Visual Basic macros and a sample
Microsoft Excel version 4.0 macro to restore the tab split box to its
default.

MORE INFORMATION
================

Some video drivers, particularly very high resolution (1024x768, 1280x1024,
and so on) drivers, may exhibit "jumpiness" when you switch from one
insertion point mode to another (for example when you move the insertion
point from the worksheet, where it usually appears as an arrow or a
plus sign (+), to the tab split box or the split box, where the insertion
point appears as a two-way split symbol).

If your screen is "jumpy", it may be difficult to determine whether your
insertion point is positioned over the split box or the tab split box when
these boxes are right next to each other. You may need to use a macro to
restore the tab split box to its default position.

The following macros each restore the tab split box to its default
position.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Visual Basic Procedure

Sub CenterTabSplitBox
 ActiveWindow.TabRatio = 0.6
End Sub

Microsoft provides macro examples for illustration only, without
warranty either expressed or implied, including but not limited
to the implied warranties of merchantability and/or fitness for
a particular purpose. This macro is provided 'as is' and Microsoft
does not guarantee that the following code can be used in all
situations. Microsoft does not support modifications of the code
to suit customer requirements for a particular purpose.

Microsoft Excel Version 4.0 Macro

A1: CenterTabSplitBox
A2: =WORKBOOK.TAB.SPLIT(0.6)
A3: =RETURN()

To use this macro:

1. On the macro sheet, select cell A1.

2. From the Insert menu, choose Name, and choose Define.

3. In the Define Name dialog box, select the Command option.

4. Choose OK to accept the change.

When you want to run either of the macros, choose Macro from the Tools
menu. Select the name of the macro from the list of macros and choose Run
to run the macro. Your tab split box will be restored to the default
position.

REFERENCES
==========

"User's Guide 1," Chapter 7

Additional reference words: 5.00

XL5: Excel 4.0 Menus Option Setting Not Saved
Article ID: Q106357

--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

When you switch to Microsoft Excel Version 4.0 menus, the setting is
not retained when you exit Microsoft Excel.

CAUSE
=====

In Microsoft Excel, you can switch to Microsoft Excel version 4.0
menus by choosing Options from the Tools menu and selecting the
Microsoft Excel Version 4.0 Menus option on the General tab. However,
when you exit Microsoft Excel, the Microsoft Excel Version 4.0 Menus
setting is not retained.

This behavior is by design.

The Microsoft Excel Version 4.0 Menus option is provided to help you
adjust to the 5.0 menus. However, when this option is selected, you do
not have full access to all the functionality of Microsoft Excel
version 5.0.

WORKAROUND
==========

The following sampe macro automatically switches to Microsoft Excel
Version 4.0 menus each time you start Microsoft Excel.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Example of Procedure

To create the procedure, do the following:

1. In a new workbook, choose Macro from the Insert menu and choose Module.

2. In the new Module, enter the following code:

 ' Macro name must be auto_open() to run automatically
 Sub auto_open()
 ' Switch to Microsoft Excel version 4.0 menus
 Application.DisplayExcel4Menus = True
 ' Switch back to Sheet1 of default workbook
 Sheets("Sheet1").Select
 End Sub

4. From the File menu, choose Save.

5. In the File Name box, enter a name for the workbook.

6. In the Directories box, select the Excel Startup directory (XLSTART) and
 choose OK.

7. From the Window menu, choose Hide.

8. From the File menu, choose Exit. When asked to save the workbook, choose
 Yes.

The next time you start Microsoft Excel, this workbook will be opened
and the Microsoft Excel version 4.0 menus will be displayed.

REFERENCES
==========

"User's Guide," version 5.0, page 642

"Visual Basic User's Guide," version 5.0, page 266

For more information about Switching To The Version 4.0 Menus, choose
the Search button in Help and type:

 Microsoft Excel 4.0

Additional reference words: 5.00

XL5: Unlocked Cells Not Underlined With Protection Enabled
Article ID: Q106390
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel versions earlier than 5.0, while worksheet
protection is enabled and gridlines are turned off, unlocked cells
appear underlined. This underline identifies the cells that you can
edit.

Although this feature is not available in Microsoft Excel version 5.0,
you can create a macro that will allow you to simulate this behavior.

MORE INFORMATION
================

The following Visual Basic macro places a bottom border on all
unlocked cells in a worksheet. The macro also removes any bottom
border from locked cells.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

To create the macro:

1. From the Insert menu, choose Macro, and then choose Module.

2. In the module, type the following macro code:

 Sub Format_Unlocked_Cells()
 'Declare procedure-level variables
 Dim x As Range, lastcell As Range
 'Prevent screen redraw to speed up the macro
 Application.ScreenUpdating = False

 'Unprotect the worksheet to allow editing
 ActiveSheet.Unprotect ("my_password")
 'Set lastcell to point to the last cell on the sheet
 Set lastcell = Selection.SpecialCells(xlLastCell)

 'Place bottom borders on unlocked cells and remove any bottom
 'borders from locked cells
 For Each x In Range("A1", lastcell)
 With x.Borders(xlBottom)
 If x.Locked = False Then
 .Weight = xlHairline
 .ColorIndex = xlAutomatic
 Else
 .LineStyle = xlNone
 End If
 End With
 Next x

 ActiveSheet.Protect ("my_password") 'Re-apply worksheet
protection.
 End Sub

 NOTE: If you want to format a specific cell range, replace
 Range("A1", lastcell) with the range you want to format, for
 example, Range("A1:G100").

To use the macro:

1. Activate the worksheet that you want to format.

2. From the Tools menu, choose Macro.

3. From the list of macros, select the Format_Unlocked_Cells macro and
 choose Run.

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, Chapter 5

Additional reference words: 5.00

XL5: Worksheet May Be Activated When Method Is Applied
Article ID: Q106463
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

When you apply methods or change properties of a worksheet, the target
worksheet may need to be activated before the macro can perform the
requested action. If the worksheet is not already active, a brief
flash will be noticeable on the screen when the sheet is activated.

MORE INFORMATION
================

Some methods and properties that are applied to worksheets will cause
the worksheet to be briefly activated.

Steps to Reproduce Behavior

1. From the File menu, choose New, and then choose Workbook.

2. From the Insert menu, choose Macro, and then choose Module.

3. In the Visual Basic module, type the following text:

 Sub Protect_Sheet1()
 ActiveWorkbook.Sheets("Sheet1").Protect
 End Sub

4. With the Visual Basic module active, choose Macro from the Tools
 menu. Select Protect_Sheet1 from the list and choose Run.

The following procedures will also briefly activate the worksheet:

 ActiveWorkbook.Sheets("Sheet1").Unprotect
 ActiveWorkbook.Sheets("Sheet1").Visible = True

Some methods or properties, such as the one in the following example,
may activate the sheet and cause it to remain the active sheet:

 ActiveWorkbook.Sheets("Sheet1").Move

Additional reference words: 5.00

XL5: Using Visual Basic to Return Screen Elements
Article ID: Q106719
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, when you develop a custom application that
will run on computers with different screen resolutions, it may be useful
to determine the amount of space that different workspace elements such as
the menu bar, formula bar, status bar and toolbars will use. After you
determine the amount of space these element use, you can then determine how
and where to position documents and which elements you want to be
displayed.

MORE INFORMATION
================

With the Microsoft Visual Basic Programming System, Applications Edition,
you can write code that will retrieve workspace properties. For example the
APPLICATION.USABLEWIDTH and APPLICATION.USABLEHEIGHT command allow you to
return the width and height (in points) of the workspace.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Sample Macro Code

The following example determines the height of the status bar:

Sub statusbarheight()
 'Declares the Variables as Integers
 Dim Nostatusbar as Integer
 Dim Withstatusbar as Integer
 Dim StatusHeight as Integer

 Application.DisplayStatusBar = False 'Turns status off
 nostatusbar = Application.UsableHeight 'finds height without
 'status bar
 Application.DisplayStatusBar = True 'Turns the status bar on
 withstatusbar = Application.UsableHeight 'Finds height with
 'status bar on
 statusheight = nostatusbar - withstatusbar 'Determines the
 'difference
 MsgBox ("The height of the status bar in points is " & statusheight)
End Sub

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, Chapter 5

Additional reference words: 5.00 Get.workspace(13) Get.Workspace(14) howto

XL5: Alert Function Does Not Beep in Excel Version 5.0
Article ID: Q107137

--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel versions earlier than 5.0, the ALERT() macro
function automatically causes the computer to beep. In Microsoft Excel
version 5.0, the computer does not automatically beep when you use the
ALERT() macro function or the Visual Basic MsgBox function.

MORE INFORMATION
================

Microsoft Excel version 5.0 does not automatically beep when an
ALERT() box or MsgBox is displayed. This allows you to determine what
sound (if any) you want to play when a message box is displayed.

If you do want to hear a beep sound, you must use the BEEP() function
or the Visual Basic Beep statement before you issue the ALERT()
function or the MsgBox command. The following examples illustrate how
to do this.

Visual Basic Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

In Microsoft Excel 5.0, open a new Visual Basic module and type the
following code:

Sub Test()
 Beep 'Causes the computer to beep

 MsgBox "Hello", 64 'Displays an information message box
End Sub

Microsoft Excel 4.0 Macro Example

In Microsoft Excel 5.0, open a new Microsoft Excel 4.0 macro sheet and
type the following macro:

 A1: =BEEP()
 A2: =ALERT("Hello")
 A3: =RETURN()

Explanation of Macro Code

A1: Causes the computer to beep.
A2: Displays an information alert box with the text: "Hello"
A3: Ends the macro.

Instead of using the =BEEP() function or the Beep procedure, you can
use the SOUND.PLAY() function to play any sound before displaying the
message box. For example, for a Visual Basic macro, use the following
code:

 Application.ExecuteExcel4Macro "SOUND.PLAY(,""C:\WINDOWS\CHIMES.WAV"")"

For a Microsoft Excel version 4.0 macro, use the following code:

 =SOUND.PLAY(,"C:\WINDOWS\CHIMES.WAV")

Additional reference words: 5.00 dialog

XL5: Formatting Name of Months in All Capital Letters
Article ID: Q107139
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In the built-in date format in Microsoft Excel, only the first letter of
the month is uppercase. If you want to make the entire month appear in
uppercase letters, you can automate this process with a Visual Basic macro,
or, you can use the UPPER() function in a Microsoft Excel 4.0 macro.

MORE INFORMATION
================

Visual Basic Procedure

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

This procedure takes a date in any number format, changes it to a text
string in 'mmm' format, and then makes all the letters uppercase. For
example, if a cell contained a date of January 1, 1993, in the format Jan-
93, it would be converted to JAN.

CAUTION: This procedure will delete the value representing the date.

To create and use this procedure, do the following:

1. Enter the following code in a module sheet

Sub Upper()
 Dim Cell As Object 'Declare the Cell variable.
 For Each Cell In Selection
 'If the cell is blank or a text string, then
 'skip to the next cell in the selection.

 If Cell.Value <> "" And Val(Cell.Value) > 0 Then
 'Format the cell as text in a 'mmm' number format,
 'and change it to uppercase.
 Cell.Value = UCase(Format(Cell.Value, "mmm"))
 End If
 Next
End Sub

2. To run the above code, select any range of cells, choose Macro from the
 Tools menu, select the Upper macro, and choose Run.

Microsoft Excel Version 4.0 Macro

You can use the UPPER() function to create a macro that will change
the letters in a three-letter month abbreviation to uppercase, as in
the following example

 =UPPER(TEXT(cell_ref,"mmm"))

where cell_ref is the cell that contains the date.

Additional reference words: 5.00 mpf

XL5: WORKBOOK.ACTIVATE() Returns Error If Sheet_Name Omitted
Article ID: Q107385
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel version 5.0, if you do not specify the sheet_name
argument when you use the WORKBOOK.ACTIVATE() command in a Microsoft
Excel version 4.0 macro, the command will return a macro error.

CAUSE
=====

In earlier versions of Microsoft Excel, you can omit the first
argument of the WORKBOOK.ACTIVATE() command to activate the workbook
contents screen. Because Microsoft Excel version 5.0 does not have a
workbook contents screen, sheet_name is a required argument.

The workbook contents screen has been replaced with tabs located along
the bottom of the Microsoft Excel application window. There is a tab
for each worksheet, module, Microsoft Excel 4.0 macro, and chart in
the workbook.

WORKAROUND
==========

Avoid using a macro command to activate a workbook contents window. You can
perform the desired action on a workbook in Microsoft Excel version 5.0
without this command.

For example, the following macro in Microsoft Excel version 4.0 activates
the workbook contents window in the current workbook and protects it.

 A1: Protect_Contents
 A2: =WORKBOOK.ACTIVATE(,FALSE)
 A3: =PROTECT.DOCUMENT(TRUE,FALSE,,FALSE)
 A4: =RETURN()

If you run this same macro in Microsoft Excel version 5.0, a macro error
occurs at cell A2 because the second argument in this function is not
supported. To accomplish the same action in Microsoft Excel version 5.0
using a macro, use the following examples:

Visual Basic Macro

 Sub Protect_Contents()
 ActiveWorkbook.Protect Structure:=True, Windows:=False
 End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

Microsoft Excel Version 4.0 Macro

 A1: Protect_Contents
 A2: =WORKBOOK.PROTECT(TRUE,FALSE)
 A3: =RETURN()

Microsoft provides macro examples for illustration only, without warranty
either expressed or implied, including but not limited to the implied
warranties of merchantability and/or fitness for a particular purpose. This
macro is provided as is and Microsoft in no way guaranties that the
following code can be used in all situations and will not support
modifications of the code to suit specific customer requirements.

REFERENCES
==========

"Function Reference," version 4.0, page 460

Additional reference words: 5.00 4.00 4.00a

XL5: Finding Default Printer and Port Settings
Article ID: Q107621
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

Microsoft Excel version 5.0, does not have the built-in functionality to
directly recognize default printer and port settings. To return this
printer information, use the Microsoft Windows Dynamic Link Libraries
(DLLs) to read the DEVICE line of the [WINDOWS] section of the WIN.INI
file.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following macro will return the default printer type and port.

'Enter the following Declare Function as a single line
Declare Function GetProfileString Lib "KERNEL" (ByVal lpAppName As String,_
 ByVal lpKeyName As String, ByVal lpDefault As String,_
 ByVal lpReturnedString As String, ByVal nSize As Integer) As Integer

Sub Default_Printer_Port()
Dim Result As String * 255
Dim Printer As String
Dim Port As String
 'Gets info from win.ini
 Call GetProfileString("Windows","Device","",result,254)
 'Gets first part of device line
 Printer = Left(result,InStr(result, ",")-1)
 'Gets last part of device line
 Port = Mid(result, InStr(InStr(result, ",") +1, result, ",") +1)

 'Displays Printer and port in successive message boxes
 MsgBox "The current default printer is " & Printer
 MsgBox "The current default port is " & Port
End Sub

Additional reference words: 5.00 call register

XL5: Cannot Add Sheet After Last Sheet in a Single Action
Article ID: Q107622

--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, it is not possible to add a new
sheet after the last sheet in the workbook in a single action. For
example, if you have a workbook that contains Sheet1 and Sheet2 (in
left-to-right sheet tab order), you cannot add a new sheet to the
right of Sheet2.

This situation occurs regardless of whether you add the new sheet manually,
use Visual Basic code, or use Microsoft Excel 4.0 macro code.

You can add a new sheet to a workbook and make the sheet become the last
sheet in the workbook, but at least two separate actions are required to do
this.

MORE INFORMATION
================

If your application requires that a new sheet be added or inserted
after the last sheet in the workbook, use either of the following
procedures:

 - If you manually add the new sheet to the workbook (by choosing the
 appropriate item in the Insert menu, for example), you can drag the new
 sheet's tab to the right of all of the other sheet tabs. This makes the
 new sheet also become the last sheet in the workbook.

 -or-

 - If you are using a Visual Basic subroutine to add the new sheet to the
 workbook, you can use the Move method to move the new sheet to the
 proper location. An example of how to do this is shown below.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a

comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following Visual Basic code example inserts a new sheet into a workbook
and makes the new sheet become the last sheet in the workbook by moving it
to the right of the rightmost sheet.

This example assumes you have a workbook that contains at least one
Visual Basic module and any number of other sheets.

To run the example, position the cursor in the line that reads
"Sub AddNewSheet()" and either press the F5 key or choose Start from
the Run menu.

'--
Sub AddNewSheet()
 Application.ScreenUpdating = False 'prevents screen refreshing
 'This line adds a new worksheet to the workbook. Alternatively, use:
 '
 'DialogSheets.Add to add a dialog sheet
 'Charts.Add to add a chart sheet
 'Modules.Add to add a Visual Basic module
 'Sheets.Add Type:=xlExcel4MacroSheet to add a MS Excel 4.0 Macro sheet
 Worksheets.Add
 'This line makes the new sheet (which is also the active sheet) the
 'last sheet in the workbook.
 ActiveSheet.Move After:=Sheets(ActiveWorkbook.Sheets.Count)
 Application.ScreenUpdating = True 'reenables screen refreshing
End Sub
'--

When you run the AddNewSheet subroutine, it will add a new sheet to
the active workbook and make the new sheet become the last sheet in
the workbook.

If you try to add a new sheet after the last sheet in the workbook,
all in a single action, you will receive the error message:

 Add method of Sheet class failed

For example, the following command will return an error message

 Worksheets.Add After:=Sheets(ActiveWorkbook.Sheets.Count)

because it attempts to add a new sheet after the last sheet in the
workbook.

Additional reference words: 5.00

XL5: Error Unhiding Multiple Sheets in Visual Basic
Article ID: Q107623
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In the Microsoft Visual Basic Programming System, Applications Edition, it
is not possible to unhide multiple sheets with a single command. If you try
to change the Visible property for more than one sheet to True in a single
command such as following

 Sheets(Array("Sheet1", "Sheet2", "Sheet3")).Visible = True

you will receive the error:

 Unable to set the Visible property of the Sheets class

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following code examples assume you have a workbook that contains
three worksheets (Sheet1, Sheet2, and Sheet3) and a single Visual
Basic module (Module1).

If you run the HideSheets subroutine, the sheet tabs for Sheet1, Sheet2,
and Sheet3 will disappear from the screen as the sheets are hidden.

To unhide the sheets, you can use the UnhideSheets subroutine. This
subroutine loops through an array to unhide the sheets.

'---

Option Explicit

Sub HideSheets()
 'This line hides the sheets listed in the array
 'by setting the Visible property to False.
 Sheets(Array("Sheet1", "Sheet2", "Sheet3")).Visible = False
End Sub

Sub UnhideSheets()
 'Dimension some variables.
 Dim Collection As Variant, Item As Variant
 'This line creates an array of sheets, called "Collection".
 Collection = Array("Sheet1", "Sheet2", "Sheet3")
 'Iterate through the loop once for each sheet in the array.
 For Each Item In Collection 'for each sheet in the array,
 Sheets(Item).Visible = True 'unhide the current sheet
 Next 'repeat the loop until all done
End Sub
'---

By establishing an array (called "Collection" in this example) and using a
For Each loop, it is possible to unhide the sheets one at a time. If you
are unhiding many sheets, you may want to use the following line of code to
disable your screen while the sheets are being unhidden:

 Application.ScreenUpdating = False

To re-enable the screen when you are done, use the following command:

 Application.ScreenUpdating = True

Additional reference words: 5.00

XL5: Disabling Microsoft Excel Control Menu Commands
Article ID: Q107689
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

You can use the Microsoft Windows Dynamic Link Libraries (DLLs) to disable
the commands in the Microsoft Excel Control menu. For example, you can use
these tools to delete the Minimize and Maximize buttons.

MORE INFORMATION
================

Microsoft Excel does not have the built-in functionality to modify the
Control menu commands. However, you can use the Microsoft Windows Declare
functions to disable Control menu items.

The following sample Visual Basic procedure disables the entire Control
menu in Microsoft Excel version 5.0. The macro disables the Control Menu
for the current session of Microsoft Excel (when you restart Microsoft
Excel the Control menu will be reset).

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Visual Basic Procedure to Disable Control Menu
--

Declare Function GetActiveWindow Lib "User" () As Integer

'Enter this Declare statement as a single line
Declare Function GetSystemMenu Lib "User" (ByVal hWnd As Integer,_
 ByVal_ bRevert As Integer) As Integer

'Enter this Declare statement as a single line

Declare Function DeleteMenu Lib "User" (ByVal hMenu As Integer,_
 ByVal_ nPosition As Integer, ByVal wFlags As Integer) As Integer

Sub Disable_Control()
 Dim X as Integer
 For X = 1 to 9
 'Deletes the first Menu command and loops until all commands are deleted
 Call DeleteMenu(GetSystemMenu(GetActiveWindow, False),0,1024)
 Next X
End Sub

The commands on the control menu are numbered starting a zero. On the
default, Control Menu Restore is item 0, Move is item 1, Size is item
2 and so on. Even if items are deleted, the first item always starts
at zero.

To delete individual items from the control menu without deleting the
entire menu, you can specify the menu command to delete. For example the
following two lines of code when used in place of the above For Next loop,
will delete the Maximize (item 4) and Minimize (item 3) commands and
disable the Maximize and Minimize buttons.

Call DeleteMenu(GetSystemMenu(GetActiveWindow, False),4,1024)
Call DeleteMenu(GetSystemMenu(GetActiveWindow, False),3,1024)

Additional reference words: 5.00 call register remove

XL5: Continue Macro Execution While Playing a .WAV File
Article ID: Q107690
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

The APPLICATION.SOUND.PLAY() or SOUNDNOTE.PLAY functions allow a
macro to execute and play wave(.WAV) files. When you use these
functions in a macro, Microsoft Excel must wait for the entire sound
file to play before it can run the rest of the macro.

You can use the following

 - The Declare Functions,

 -and-

 - Microsoft Windows version 3.1(which includes MultiMedia Extensions),

 -and-

 - A sound card (such as the Windows Sound System or MediaVision's Pro
 Audio Spectrum),

to play the sound file with a macro. When you play the sound file in
this manner, the macro will not have to wait for the wave file to
finish playing. As soon as MultiMedia Extensions takes over playing
the sound file, Microsoft Excel continues to execute the rest of the
macro.

MORE INFORMATION
================

When you play the .WAV file this way, the sound file continues to play
while the macro finishes executing, and it appears as if Microsoft
Excel is performing two tasks at once. To demonstrate this behavior,
play a .WAV file describing the contents of a dialog box and then
display the dialog box. The following sample macro can be used in
Microsoft Excel, version 5.0, for this purpose.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is

doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

WARNING: The Declare Function statements listed in the following
macro are very sensitive. If used incorrectly, these functions may
cause a general protection (GP) fault in Windows or cause serious
software problems.

'The following two lines should be entered as a single line on a 'module
sheet
Declare Function sndPlaySound Lib "MMSYSTEM.DLL" (ByVal lpszSoundName
As String,_ ByVal wFlags As Integer) As Integer

Sub main()
 'Calls the sndPlaySound function and passes it the name of
 'the sound file to play
 Call sndPlaySound("c:\bat\wave\close.wav", 0)
End Sub

You can replace c:\bat\wave\close.wav with the path to any valid .wav
file. This macro assumes the that you are using Microsoft Windows 3.1
and have a compatible sound card installed. Software sound drivers
such as SPEAK.EXE will not give the desired results (these drivers
must play the entire sound file before allowing Microsoft Excel to
continue execution of the macro).

For more complete information about the sndPlaySound function of the
MMSYSTEM.DLL, refer to the "Multimedia Programmer's Reference." This
manual is part of the Microsoft Windows operating system version 3.1,
Software Development Kit (SDK).

Additional reference words: 5.00 5.0 blaster soundblaster wss creative labs

XL5: Client Not Updated with Multiple Instances of Excel
Article ID: Q107745
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

When multiple instances of Microsoft Excel are simultaneously serving as
dynamic data exchange (DDE) clients to a single DDE server, only one
instance of Microsoft Excel will be updated.

MORE INFORMATION
================

This is a problem with the current implementation of the DDE management
library (DDEML). The problem will only occur when all of the following
conditions are met:

 - There are two or more instances of the same application serving as DDE
 clients.

 - The applications all have objects with the same name (such as "Sheet1")

 - The applications are all trying to use FETCH.ADVISE

Steps to Reproduce Problem

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

1. Start Microsoft Query.

2. Open two instances of Microsoft Excel and run the following Visual Basic
 macro from each instance:

 Sub dde()

 chanNum = DDEInitiate("msquery", "system")
 ' Use the path for your query file for the following:
 DDEExecute chanNum, "[open('c:\excel\query1.qry')]"
 nRows = DDERequest(chanNum, "NumRows")
 nCols = DDERequest(chanNum, "NumCols")
 DDEExecute chanNum, "[fetch.advise('Excel','sheet1','r1c1:r" & _
 nRows(LBound(nRows)) & "c" & nCols(LBound(nCols)) & "','all')]"

 End Sub

NOTE: You will need to create a query file to run this macro if you don't
already have one. Use the path for this file in line 2 of the macro.)

3. Check Sheet1 on both instances of Excel; they should display a copy of
 the query.

4. Switch to Query Tool and from the Records menu, choose Allow Editing.

5. Change some of the records in the query.

Check Sheet1 on both instances of Microsoft Excel; the records should have
been updated on one but not the other.

Additional reference words: 5.00

XL5: Macro to Print a Group of Files Located in Same Directory
Article ID: Q107880
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

In Microsoft Excel, you can use the following Visual Basic macro to print a
batch of files that are all located in the same directory. The macro
requests a directory name and then prints all the files in that directory.

Sample Macro Code

Sub Batch_Print()
Dim Input_Dir, Print_File As String
 Input_Dir = InputBox("Input directory path containing the files
 to print")
 ' Defines Print_File equal to the first Microsoft Excel file found in
 ' the directory specified in the InputBox above.
 Print_File = Dir(Input_Dir & "*.xl*")
 ' Loops through the directory specified in the above InputBox
 ' and opens each workbook in the directory, prints all sheets
 ' in the workbook and closes the workbook. Continues until are
 ' all files are printed.
 Do While Len(Print_File) > 0
 Workbooks.Open Filename:=Input_Dir & "\" & Print_File
 ActiveWorkbook.PrintOut Copies:=1
 ActiveWorkbook.Close
 Print_File = Dir()
 Loop
End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

REFERENCES
==========

"Visual Basic Reference," version 5.0, pages 143-145

Additional reference words: 5.00

XL5: Determining Which DLLs Are Registered
Article ID: Q108002
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, to determine which DLLs are registered, you
can do either of the following:

 - Choose the About Microsoft Excel command from the Help menu to display a
 list of all DLLs currently registered on your system.

 NOTE: Microsoft System Info is a Setup option. If it is not available
 on your system, rerun Setup, choose the Complete/Custom button, select
 the Tools option, and select the System Information Checking option.

 -or-

 - Use a Visual Basic statement to return a list of all the DLLs and XLLs
 that provide functions registered in Microsoft Excel.

To use Microsoft System Info to display a list of registered DLLs

1. From the Help menu, choose About Microsoft Excel.

2. Choose the System Info button.

3. From the Choose a Category list, select System DLLs.

The Microsoft System Info dialog box displays a list of all registered
DLLs, indicating the DLL filename, version, date, size in bytes, and
displays the word "Yes" next to each DLL that is currently in memory.

To use a Visual Basic procedure

You can use the RegisteredFunctions property to return an array of every
Microsoft Excel function that is provided by DLLs and other code resources,
along with the name of the associated file.

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note

also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide.

The following example code creates a three-column array of all registered
functions in Microsoft Excel, where column 1 displays the name of the DLL
or code resource; column 2 displays the name of the procedure in the DLL or
code resource; and column 3 displays strings specifying the data types of
the return values, and the number and data types of the arguments:

Sub GenerateDLLList()
 theArray = Application.RegisteredFunctions
 If IsNull(theArray) Then
 MsgBox "No registered functions"
 Else
 For i = 1 To UBound(theArray)
 For j = 1 To 3
 Cells(i, j).Formula = theArray(i, j)
 Next j
 Next i
 End If
End Sub

If you need to generate a list of all DLLs on your system, not just the
ones used by Microsoft Excel, you can use the following code to export the
System Info information (see above) to a text file named MSINFO.TXT, saved
to your WINDOWS directory:

 Application.SendKeys "%h"
 Application.SendKeys "a"
 Application.SendKeys "%s"
 Application.SendKeys "%s"
 Application.SendKeys "{ESC}"
 Application.SendKeys "{ESC}"
 Application.SendKeys "{ESC}"

After saving MSINFO.TXT, your macro can then open the file and access the
DLL registration information contained in Column A, under the System
DLLs heading.

Additional reference words: 5.00

XL5: Visual Basic Procedure to Display Screen Metrics
Article ID: Q108012
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

The following macro allows you to determine the metrics of your video
display (that is, horizontal resolution, vertical resolution, number of
colors) by using a macro in Microsoft Excel, version 5.0. This information
may be helpful in creating macros that create variable-sized custom dialog
boxes based on display size or take into account the effect of display
resolution on printed output.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

'Each Declare statement should be entered as a single line
Declare Function GetActiveWindow Lib "USER" () As Integer

Declare Function GetDeviceCaps Lib "GDI" (ByVal hDC As Integer, ByVal _
nIndex As Integer) As Integer

Declare Function GetDC Lib "USER" (ByVal hWnd As Integer) As Integer

Const Horz_res = 8
Const Vert_res = 10
Const Planes = 14
Const BitsPixel = 12

Sub Display_info()
 'Returns the handle of the active window
 Act_Win = GetActiveWindow()

 'Returns the handle to the Device Context
 Dev_Con = GetDC(Act_Win)
 'Displays The Horizontal Video resolution
 MsgBox "Horz Video Resolution = " & GetDeviceCaps(Dev_Con, Horz_res)
 'Displays The Vertical Video resolution
 MsgBox "Vert Video Resolution =" & GetDeviceCaps(Dev_Con, Vert_res)
 'Displays the number of Planes
 MsgBox "Planes = " & GetDeviceCaps(Dev_Con, Planes)
 'Displays the number of Bits per Pixels
 MsgBox "Bits per Pixel = " & GetDeviceCaps(Dev_Con, BitsPixel)
End Sub

The above macro displays 4 message boxes showing the following:

 - Horizontal video resolution
 - Vertical video resolution
 - Number of Planes
 - Bits per Pixel

Additional Reference Words: 5.00 5.0 high res mapping screen driver

OLE Automation: GetObject Function with Filename Opens File
Article ID: Q108074
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In a Microsoft Visual Basic application, if you use the GetObject
function with a filename to activate a file in Microsoft Excel, you
may receive the following error message in Microsoft Excel:

 Book1.xls is already open. Reopening will cause your changes to be
 discarded. Do you want to reopen?

CAUSE
=====

When you use the GetObject function with a filename to activate a
workbook in Microsoft Excel, the file is opened, whether or not the
file is already open. If the file is already open, and contains
changes you have not saved, the above error message is returned.

WORKAROUND
==========

To activate the workbook BOOK1.XLS as an object linking and embedding (OLE)
Automation object and avoid opening BOOK1.XLS if it is already open, do the
following:

1. Activate the Microsoft Excel Application object.

2. Check for an open workbook called BOOK1.XLS.

3. Activate BOOK1.XLS if it is open.

 -or-

 Open BOOK1.XLS if it is not open.

The following sample code demonstrates the workaround described above. The
code scans the open workbooks in Microsoft Excel and activates BOOK1.XLS if
it is open.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an

apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide."

 'Dimension variable xl as object type
 Dim xl As Object
 'Dimension variable Workbook as object type
 Dim Workbook As Object
 'Activate Microsoft Excel and assign to variable xl
 Set xl = GetObject(, "Excel.application.5")
 'Set n to number of open workbooks
 n = xl.Workbooks.Count
 'Loop through each open workbook
 For c = 1 To n
 'Test to see if workbook is BOOK1.XLS
 'If true, activate BOOK1.XLS and exit loop
 'BOOK1.XLS in this line of code must be capitalized
 If xl.Workbooks(n).Name = "BOOK1.XLS" Then
 xl.Workbooks("BOOK1.XLS").Activate
 Exit For
 End If
 Next c

MORE INFORMATION
================

You can use the Visual Basic GetObject function to access an OLE
automation object and assign the object to an object variable. You
can then use the object variable to reference the OLE automation
object in your Visual Basic code.

Steps to Reproduce Problem

1. In a new worksheet, from the File menu, choose Save.

2. In the File Name box, type "BOOK1.XLS" (without the quotation marks) and
 choose OK.

3. In BOOK1.XLS, type "1" (without the quotation marks) in cell A1.

4. In Microsoft Visual Basic for Windows, enter and run the following code.

 'Dimension variable xlsheet as object type
 Dim xlsheet As object
 'Activate BOOK1.XLS and assign to variable xlsheet. Enter these two
 'lines as a single line. Note: use the appropriate path for your file
 '(this example assumes BOOK1.XLS has been saved in C:\EXCEL5\FILES).
 Set xlsheet = _
 GetObject("c:\excel5\files\[book1.xls]sheet1","Excel.Sheet.5")
 'Insert 10 in cell A2

 xlsheet.Cells(2, 1).value = 10

The following error message appears in Microsoft Excel:

 Book1.xls is already open. Reopening will cause your changes to be
 discarded. Do you want to reopen?

If you choose Yes, the file will be closed and opened again without saving
the change you made in step 3. If you choose No, the workbook will remain
open with the change you made in step 3, but you will receive an error
message and the next line of code will not run.

For more information about the GetObject Function or OLE Automation,
choose the Search button in Visual Basic Help and type:

 OLE Automation

Additional reference words: 5.00

XL5: Calculating Depreciation with the Production Method
Article ID: Q108271
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

Microsoft Excel includes functions to calculate straight line, sum of the
years digits, and double-declining balance depreciation (SLN, DDB, SYD). A
fourth depreciation method, the production method, is widely used in
business to calculate depreciation on items that can produce discrete
units. Items such as vehicles and machinery are most often depreciated in
this manner. The custom function module shown below calculates depreciation
using this method.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

1. Enter the following into a new module:

 'Defines the variables
 Function Prod_depr(usage as Double, cost as Double, residual_value
 as Double, useful_life As Double) As Double
 'Performs the mathematical computation.
 Prod_depr = usage * ((cost - residual_value) / useful_life)
 'Terminates function
 End Function

2. Enter the arguments for the function based on the following
 descriptions:

 - "usage" is the amount of usage, in units, the item has received
 during the depreciation period. This can be measured in miles or

 hours used.
 - "Cost" is the original price paid for the item.
 - "Residual_value" is the estimated salvage or trade-in value.
 - "useful_ life" is the planned usage, in units, of the item during
 its lifetime.

Example

Suppose a truck is purchased for $25,000, and has a residual value of
$1500. The useful life of the truck is 250,000 miles. During a specific
period of operation, the truck is driven for 15,000 miles. Using the
above function, the depreciation for that period is $1410.

usage =15,000 miles
cost =$25,000
residual_value =$1,500
use_life =250,000 miles

NOTE: It may be easier to enter the formula

 = usage * ((cost - residual_value) / useful_life

directly into your worksheet if you do not intend to use the function
frequently.

Additional reference words: 5.0 Production Depreciation

XL5: Visual Basic Procedure to Display System Resources
Article ID: Q108277
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

In Microsoft Excel 5.0, you can create a Visual Basic procedure that uses
the Microsoft Windows API (application programming interface) Library to
return the percentage of available User, GDI, and System resources.

Sample Visual Basic Procedure

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

'The following Declare Function should be entered on a single line
Declare Function GetFreeSystemResources Lib "USER" (ByVal fuSysResource _
As Integer) As Integer

'Declaration of Constants
Const GFSR_SYSTEMRESOURCES = 0
Const GFSR_GDIRESOURCES = 1
Const GFSR_USERRESOURCES = 2

'The Following macro code creates a Message box that displays
' the percentage of GDI, USER and SYSTEM RESOURCES
'available to Microsoft Windows on individual lines

Sub Get_Resource()
 Static LN As String * 1
 Dim Msg As String
 'LN forces the Message Box to wrap to a new line
 LN = Chr(13)
 'Percentage of Free GDI RESOURCES
 Msg = "GDI Resources = " & _
 GetFreeSystemResources(GFSR_GDIRESOURCES) & " %" & LN
 'percentage of Free USER RESOURCES
 Msg = Msg & "User Resources = " & _

 GetFreeSystemResources(GFSR_USERRESOURCES) & " %" & LN
 'percentage of Free SYSTEM RESOURCES
 Msg = Msg & "System Resources = " & _
 GetFreeSystemResources(GFSR_SYSTEMRESOURCES) & " %"
 'Display results in a message box
 MsgBox Msg
End Sub

REFERENCES
==========

Microsoft Windows SDK
Microsoft Visual Basic 3.0 Professional - WINAPI31.HLP help file

Additional reference words: 5.00 USER.EXE find call register howto VB

XL5: Macros to Return Windows and System Directories Paths
Article ID: Q108278
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel, version 5.0, you can create a macro to return the
path to the Windows or Windows System directory by using the Declare
Functions to access built-in functions in Microsoft Windows, version
3.1. The following macros use the GetWindowsDirectory and
GetSystemDirectory function calls to retrieve the desired directory
information.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

'The following two declare statements need to be entered as single
'individual lines on the module sheet.
Declare Function GetSystemDirectory Lib "KERNEL" (ByVal lpBuffer As _
String, ByVal nSize As Integer) As Integer

Declare Function GetWindowsDirectory Lib "KERNEL" (ByVal lpBuffer As _
String, ByVal nSize As Integer) As Integer

Sub GetDir()
'sets the buffer length for both variables to 144
Dim Win_Dir As String * 144
Dim Sys_Dir As String * 144
 'returns the windows directory
 y = GetWindowsDirectory(Win_Dir, Len(Win_Dir))
 'Displays the windows directory in a Message box
 MsgBox Win_Dir

 'Returns the Windows\System directory
 x = GetSystemDirectory(Sys_Dir, Len(Win_Dir))
 'Displays the windows\system directory in a Message box
 MsgBox Sys_Dir
End Sub

REFERENCES
==========

"Function Reference," version 4.0, pages 42, 350
On-line Help in the Microsoft Windows SDK

Additional reference words: 5.00

XL5: Function to Compute Average Without High and Low Values
Article ID: Q108280
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

For statistical purposes, you may want to calculate the average of a sample
excluding its highest and lowest values. In Microsoft Excel version 5.0,
you can create the following formula to calculate an average after
excluding the highest and lowest values:

 =(SUM(region)-MAX(region)-MIN(region))/(COUNT(region)-2)

NOTE: You must include the parentheses the way they appear in the above
formula so that the function is computed in the right order.

MORE INFORMATION
================

The following is the same function as above, incorporated into a
Microsoft Excel version 4.0 Visual Basic macro:

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Sample Visual Basic Macro

Function HiloAverage(region) As Variant
 With Application
 HiloAverage=(.Sum(region)-.Max(region)-.Min(region))/(.Count(region) - 2)
 End With
End Function

REFERENCES

==========

"Visual Basic Language Reference," version 3.0, Page 231

Additional reference words: 5.00

XL5: Macro to Toggle spooler= Line of WIN.INI
Article ID: Q108281
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel, version 5.0, you can use the following Visual Basic
code to toggle the spooler= setting in the WIN.INI file (from Yes to No or
from No to Yes).

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

WARNING: The Declare Function statements listed in the following macro are
sensitive. If you use these statements incorrectly, these functions may
cause a general protection (GP) fault in Windows or cause serious software
problems.

'Enter each of the following Declare Functions as a single line.

Declare Function GetProfileString Lib "Kernel" (ByVal Section As _
 String, ByVal Entry As Any, ByVal Default As String, _
 ByVal Setting As String, ByVal BytesOutput As Integer) As Integer

Declare Function WriteProfileString Lib "Kernel" (ByVal _
 Section As String, ByVal Entry As Any, ByVal EntryValue As Any) _
 As Integer

Sub ToggleSpooler()
 'Create a buffer to return the string into.
 Dim Setting As String * 4
 'Find the current value of Spooler in the WIN.INI file.

 'Note: enter the following two lines as a single line.
 Length = GetProfileString("windows", "spooler", "", Setting, _
 Len(Setting))
 'If Spooler = yes then set Spooler to no.
 'Note: enter the following two lines as a single line.

 If Left(Setting, Length) = "yes" Then
 Length = WriteProfileString("windows", "spooler", "no")
 MsgBox "Spooler has been turned off. Please restart Windows."
 Else
 'If Spooler = anything other than yes, set spooler to yes.
 Length = WriteProfileString("Windows", "spooler", "yes")
 MsgBox "Spooler has been turned on. Please restart Windows."
 End If
End Sub

Additional reference words: 5.00 change settings

XL5: Distinguishing Sheet Types In Visual Basic
Article ID: Q108350
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel, version 5.0, the Visual Basic TypeName function
will return the "Worksheet" value when you use it to identify worksheets,
MS Excel 4.0 Macro sheets, or MS Excel 4.0 International Macro sheets.

Because these sheets all return the same value, you must use the Type
property to distinguish between these three types of sheets. The following
Visual Basic code demonstrates how to use this property.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following Visual Basic code examples assume that you have a
workbook that contains one worksheet, one MS Excel 4.0 Macro sheet,
one chart sheet, one dialog sheet, and one Visual Basic module, in
that order. The code example is located in the Visual Basic module.

To run the macro position the insertion point in the line that reads "Sub
Sheet_Type()" and choose Start from the Run menu.

'---
Option Explicit

Sub Sheet_Type()
 'Dimension variables.
 Dim X As Variant
 'Iterate through the loop once for each sheet in the workbook.

 For Each X In ActiveWorkbook.Sheets
 'If the sheet's TypeName is "Worksheet", then
 If TypeName(X) = "Worksheet" Then
 'Check for each Type (xlWorksheet, xlExcel4MacroSheet,
 'xlExcel4IntlMacroSheet) and display the appropriate message
 'box.
 If X.Type = xlWorksheet Then
 MsgBox "Worksheet"
 ElseIf X.Type = xlExcel4MacroSheet Then
 MsgBox "MS Excel 4.0 Macro Sheet"
 ElseIf X.Type = xlExcel4IntlMacroSheet Then
 MsgBox "MS Excel 4.0 International Macro Sheet"
 End If
 'Otherwise, display a message box with the appropriate TypeName.
 Else
 MsgBox TypeName(X) 'show sheet type in message box
 End If
 Next 'repeat the loop until all done
End Sub
'--

When you run the Sheet_Type subroutine, the messages you receive are:

 Worksheet, MS Excel 4.0 Macro Sheet, Chart, DialogSheet, Module

The Sheet_Type subroutine determines if the TypeName of the current sheet
is "Worksheet" and then gets the current sheet's Type property to determine
the final result. This allows different, more correct results for the
worksheet and the MS Excel 4.0 Macro sheet.

Additional reference words: 5.00

XL5: ChDir May Fail When Changing to a Root Directory
Article ID: Q108351
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel, version 5.0, the Visual Basic ChDir statement will fail
if the path argument does not contain a backslash character (\). This
requirement may cause problems if you use ChDir to change to a root
directory, because the path of a root directory does not necessarily
contain a backslash.

For example, the following Visual Basic code will fail

 ChDir "C:"

and you will receive the following error message:

 Run-time error '76':
 Path not found

The following lines of code will succeed, because they each contain a
backslash:

 ChDir "C:\" <or> ChDir "C:\EXCEL\LIBRARY"

It is possible to incorporate error-handling into a ChDir function to
prevent an error from occurring. The Visual Basic code example below
demonstrates one way to do this.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

This Visual Basic code example displays an input box which asks you
which drive or directory you would like to switch to. When you
enter a drive or directory, the example checks whether the path you
enter contains a backslash and adds one, if needed, before switching
to that drive or directory.

To run the example, position the insertion point in the line that reads
"Sub MainMacro()" and choose Start from the Run menu.

'--
Option Explicit

Sub MainMacro()
 'Dimension some variables.
 Dim NewDir As Variant
 'Prompts you to enter a drive/directory. For example, D: or C:\EXCEL.
 'If you type in an invalid directory, the subroutine will fail. For
 'example, typing just "C" (without the quotes) is not going to work.
 NewDir = InputBox("Switch to which drive/directory?")
 'If the NewDir ends in a colon, indicating it is a root directory,
 'concatenate a backslash onto the end of it. For example, C: would
 'become C:\. If you actually enter "C:\", the subroutine doesn't add
 'another backslash.
 If Right(NewDir, 1) = ":" Then
 NewDir = NewDir & "\"
 End If
 'Switches to the proper drive (the first letter in NewDir: 'Left'
 'gives us this) and directory.
 ChDrive Left(NewDir, 1) 'change to the drive (C:, etc.)
 ChDir NewDir 'change to the directory
 'Display the name of the current directory so you know it worked.
 MsgBox "Current directory is " & CurDir()
End Sub
'--

The If-End If routine is the error-checking procedure. Whenever you use a
ChDir statement, preceding it with the If-End If routine (or some variation
of it) can help prevent the "no backslash" error.

Additional reference words: 5.00 5.0

XL5: Can't Run Macros That Use File Functions Add-in Functions
Article ID: Q108356
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

Although Microsoft Excel version 5.0 does not include the File Functions
(FILEFNS.XLA) add-in macro (or the associated FILEFNS.DLL file), if you
install Microsoft Excel version 5.0 without deleting the earlier version of
Microsoft Excel (3.0 or 4.0), the FILEFNS.XLA add-in macro will still be
available and will function normally (because the file is not deleted when
you install version 5.0). However, if you do a "clean" installation of
Microsoft Excel 5.0 (that is, if you delete the earlier version of
Microsoft Excel before you install version 5.0) and you then run a macro
that uses any of the FILEFNS.XLA add-in functions you will receive a macro
error.

Most of the file maintenance tasks that you can do with the File Functions
add-in functions can be done with Visual Basic procedures.

MORE INFORMATION
================

The following table lists the functions that are available in the File
Functions add-in macro and their Visual Basic equivalents.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Function from
File Functions Equivalent Visual Basic Statement
--

=CREATE.DIRECTORY() MdDir "MYDIR"

=DELETE.DIRECTORY() RmDir "MYDIR"

=DIRECTORIES() MyDir = Dir(pathname,16)
 'call repeatedly until Dir return a zero-
 'length string

=OPEN.DIALOG() MyDialog = Application.GetOpenFilename(fileFilter, _
 FilterIndex,Title,buttonText)
 ' This second form will bring up Microsoft
 ' Excel's internal Open Dialog Box
 MyDialog2=Application.Dialogs(xlDialogOpen).Show
 ' will bring up default open dialog

=SAVE.DIALOG() MyDialog=Application.GetSaveAsFilename _
 (initialFilename,fileFilter,filter, _
 Index,title,buttonText)
 ' This second form will bring up Microsoft
 ' Excel's 'internal SaveAs Dialog Box
 MyDialog2=Application.Dialogs(xlDialogSaveAs).Show
 ' will bring up default Save As dialog

=FILE.EXISTS() MyFile = Dir(pathname)

REFERENCES
==========

For more information about GetOpenFilename, choose the Search button in
Help and type:

 getop

For more information about GetSaveasFilename, choose the Search button
in Help and type:

 gets

Additional reference words: 5.0 5.00

XL5: How to Manipulate Macro Operation With Key Strokes
Article ID: Q108357
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel, you can create a macro that performs different
operations depending on which keys you press when you run the macro (for
example, if you want your macro to perform one operation when you press the
CTRL key and another if you don't press the CTRL key).

To control the operation of a macro, you can use one key (for example the
CTRL key) or a combination of keys (for example CTRL+ALT). Your macro will
test for the state of these keys (pressed or not pressed) to determine
which action to take.

MORE INFORMATION
================

To create a macro that responds to different key states, use an IF
function. The IF function allows you to control your macro based on the
results of calls it makes to the Windows environment. These calls to the
Windows environment allow the IF function to identify the state of the keys
you want to use. To return the key state of one or more keys, use the
Windows function, GetKeyState().

You can use the above procedure to change the operation of macros that are
already assigned to objects, buttons, menu commands, or hot keys.

NOTE: Making this kind of change will not affect the normal behavior of the
object to which the macro is assigned.

You can use any keys as long as they are not either of the following:

 - The same keys that are used to start the macro.

 -or-

 - Keys that change how Microsoft Excel interacts with the object to
 which your macro is assigned.

The GetKeyState() Function

The GetKeyState() function returns a number indicating the current state of
a specific key at the time the DLL call is made. A negative number
indicates that the key is pressed, a positive number indicates that the key
is not pressed.

The following GetKeyState() Visual Basic code is an example that returns

the current state of a key and takes action based on the key state
returned.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

WARNING: The Declare Function statements listed in the following
macro are sensitive. If used incorrectly, these functions may
cause a general protection (GP) fault in Windows or cause serious
software problems.

'Type the following two lines as a single line in the module
Declare Function GetKeyState Lib "USER" (ByVal nVirtKey As Integer) _
As Integer

Const SHIFT_KEY = 16
Const CTRL_KEY = 17
Const ALT_KEY = 18

Sub find_key()

 'Checks key states to see if both CTRL and ALT Keys are pressed
 If GetKeyState(CTRL_KEY) < 0 And GetKeyState(ALT_KEY) < 0 Then
 MsgBox "CTRL + ALT KEYS PRESSED"
 'Checks key states to see if only CTRL key is pressed
 ElseIf GetKeyState(CTRL_KEY) < 0 Then
 MsgBox "CTRL KEY PRESSED"
 'Checks key states to see if only ALT key is pressed
 ElseIf GetKeyState(ALT_KEY) < 0 Then
 MsgBox "ALT KEY PRESSED"
 'Checks key states to see if only SHIFT key is pressed
 ElseIf GetKeyState(SHIFT_KEY) < 0 Then
 MsgBox "SHIFT KEY PRESSED"
 End If

End Sub

The above example macro checks the state of the following keys or key
combinations: CTRL+ALT, CTRL, and ALT. The macro displays an alert box
describing the key or key combination that is pressed when you run the
macro.

The argument used to call the DLL function GetKeyState() is a number
indicating which key to test. The number used is the virtual key code
that the GetKeyState function uses to identify which key to test.

When you write your macro, you should be aware of the following:

 - You should check for key state at the beginning of the macro. The
 GetKeyState() function returns the state of the key at the time the DLL
 function is called not at the time the macro is run. So, it is possible
 to miss the key state if you don't check for it right away.

 - The test you use for checking which key is pressed must follow correct
 programming logic.

 - Your macro should not check for too many key possibilities. The more
 possible key combinations you check for, the longer it takes your macro
 to find the right condition and, therefore, the greater the possibility
 that the key will no longer be pressed.

REFERENCES
==========

"Microsoft Windows Software Developers Kit Reference," Volume 1, pages
1-30, 4-183

"Microsoft Windows Software Developers Kit Reference," Volume 2,
Appendix A

"Microsoft Quick C for Windows," pages 341, 935-938

Additional reference words: 5.00 call register keystate GPF

XL5: No Visual Basic Method for SET.UPDATE.STATUS
Article ID: Q108384
--
The information in this article applies to:

 - Microsoft Excel for Windows version 5.0
--

In Microsoft Excel 5.0, to set the links update status, you must use the
ExcecuteExcel4Macro method to run the SET.UPDATE.STATUS() macro command.

Macro Example

This macro sets the update status to manual in the Links dialog box which
is available when you choose Links from the Edit menu.

Sub LinkStatus()

 ExecuteExcel4Macro "SET.UPDATE.STATUS__
(""Word.Document.6|Doc!!DDE_LINK2"",2,2)"

End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

Additional reference words: 5.00

XL5: Can't Access File Opened as Read-Only in Visual Basic
Article ID: Q108432
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

A file opened as read-only through a Visual Basic macro will remain
read-only to other applications until it is closed.

This is normal operation of Visual Basic. Visual Basic opens the file
for input in compatibility mode; this prevents other users from opening
the file in anything other than compatibility-input mode.

This functionality is different than the FOPEN function in Microsoft Excel
version 4.0. The statement =FOPEN(filename,2) will allow read-only access
while allowing full access to other applications.

Macro Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following code opens a file (C:\TEST.TXT) as read only and forces the
file as read only to other applications until you close the file or quit
Microsoft Excel:

 Sub Test()
 Dim FileNumber as Integer
 FileNumber = FreeFile()
 Open "c:\test.txt" For Input Access Read As #FileNumber
 End Sub

1. Open the file C:\TEST.TXT in a text editor (such as Write, which is
 located in the accessories group of Program Manager).

2. From the File menu, choose Save.

3. You will receive a message stating that the file is read-only and should
 be saved as a different name.

Additional reference words: 5.00

XL5: GP Fault When Macro Closes Its Own Workbook
Article ID: Q108507
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel version 5.0 for Windows, you may receive a General
Protection (GP) fault if a Visual Basic macro is started by an
OnSheetDeactivate command and the macro then closes the workbook in which
it is contained.

CAUSE
=====

This error occurs only if a sheet is deleted by choosing Delete Sheet from
the Edit menu or from the Sheet Tabs menu; it does not occur if a sheet is
deactivated by switching to another sheet.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Excel version 5.0
for Windows. We are researching this problem and will post new information
here in the Microsoft Knowledge Base as it becomes available.

Additional reference words: 5.00 crash hang freeze lock-up

XL5: Selection.Rows.Count May Return Incorrect Result
Article ID: Q108508
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, the Visual Basic statement
Selection.Rows.Count, which returns the number of rows in the current
selection, will return an incorrect result if the current selection is
nonadjacent.

This incorrect result occurs because the Selection.Rows.Count statement
only counts the number of rows in the first Area of the selection. An Area
is defined as a single piece of a nonadjacent selection. For example, the
selection $1:$2, $4:$6, $8:$11 consists of three Areas:
Selection.Rows.Count will only count rows in the first Area (the range
$1:$2).

The above information also applies to Selection.Columns.Count, which
counts the number of columns in the current selection (or first Area
of a nonadjacent selection).

The Visual Basic code example shown below demonstrates one way to
return the correct number of rows (or columns) in a nonadjacent
selection.

MORE INFORMATION
================

You can create a nonadjacent selection by selecting one range and then
selecting another range while holding down the CTRL key or using Microsoft
Excel version 4.0 or Visual Basic commands that select two or more ranges
at the same time.

To count the number of rows or columns in a selection when the selection is
nonadjacent, you must separate the selection into Areas. This process is
illustrated in the Visual Basic code example below.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is

doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

NOTE: To convert this example to work with columns, substitute "Column" for
"Row."

To use the CountRows subroutine, select any combination of rows on a
worksheet. Then, choose Macro from the Tools menu, select CountRows from
the list of macro names, and choose Run.

'--
Option Explicit

Sub CountRows()
 'Dimension some variables.
 Dim Counter As Integer, NumRows As Integer
 Dim X As Variant, Y As Variant
 NumRows = 0 'initialize NumRows
 'Sets range X equal to the current selection.
 Set X = Selection
 'Initializes range Y equal to the first Area in X.
 Set Y = X.Areas(1)
 'Iterate through the loop once for each Area (nonadjacent piece)of
 'the range X. This loop consolidates the different Areas in order to
 'prevent row miscounts due to overlapping Areas.
 For Counter = 1 To X.Areas.Count
 'Set Y equal to the union of its previous range and the range of
 'the rows which encompass the current Area.
 Set Y = Application.Union(Y, X.Areas(Counter).EntireRow)
 Next 'loop until all done
 'Iterate through the loop once for each Area (nonadjacent piece)of
 'the range Y. This loop actually counts the rows.
 For Counter = 1 To Y.Areas.Count
 'Set NumRows equal to its previous value plus the number of rows
 'in the current Area.
 NumRows = NumRows + Y.Areas(Counter).Rows.Count
 Next 'loop until all done
 'Show the number of rows.
 MsgBox Str(NumRows) & " rows selected."
End Sub
'--

For example, if you select the range $1:$2, $4:$6, $8:$11 on a worksheet,
and run the CountRows subroutine, the subroutine determines how many Areas
there are in the selection (there are three: $1:$2 , $4:$6 , and $8:$11),
counts the number of rows in each Area (2, 3, and 4). The subroutine then
adds those numbers together for a total of nine rows. when the subroutine
is completed, you receive the following message

 9 rows selected.

Additional reference words: 5.00

XL5: Error Getting the Value of a Name in Visual Basic
Article ID: Q108517
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0 you may receive an error message when you
use the Visual Basic Range(Name).Value method to get the value of a name.
This error message will occur if the name in question refers to a constant
value or a formula rather than a range.

MORE INFORMATION
================

If a particular name will refer to a constant value or a formula, you can
use the .Evaluate(Name) method to get the value of the name. The
.Evaluate(Name) method can evaluate formulas and constant values even if
they don't refer to an actual range.

However, note that the .Evaluate(Name) method may return an error message
if the name refers to an error value, such as #REF! or #N/A. In these
cases, you may need to employ error checking (such as the On Error Resume
Next function) or use an alternative method, such as the
Names(Name).RefersTo method, to detect or handle an error value.

For example, if you have a sheet named Sheet1 in a workbook that contains
the following global names

This
Name Refers To Cell Information

Alpha =Sheet1!B1 Cell B1 contains the number 1
Bravo =2
Charlie =SUM(Sheet1!B3:C3) Cell B3 contains the number 3,
 cell C3 contains the number 4
Delta =Alpha
Echo =Charlie
Foxtrot =Alpha+Charlie
Golf =#N/A

and you use the Range(Name).Value and .Evaluate(Name) methods to
get the values of the names you will receive the following results:

Name Range(Name).Value Sheets("Sheet1").Evaluate(Name)

Alpha 1 1
Bravo [Error message 1] 2
Charlie [Error message 1] 7
Delta 1 1
Echo [Error message 1] 7

Foxtrot [Error message 1] 8
Golf [Error message 1] [Error message 2]

The error messages 1 and 2 are as follows.

Error message 1

 Run-time error '1004':
 Range method of Application class failed

Error message 2

 Run-time error '13':
 Type mismatch

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

To check the value of a name, you could use the following subroutine:

'--
Option Explicit

Sub CheckNameValue()
 Dim Test As Variant
 Test = Range("Alpha").Value

 'To check the value by using .Evaluate(Name), use
 '
 ' Test = Sheets("Sheet1").Evaluate("Alpha")
 '
 'in place of the previous test line.

 MsgBox Test
End Sub
'--

In order to prevent an error when the name refers to an error value (in
this case, if the name is Golf), use the Names(Name).RefersTo method to
check the name before getting its value. For example, you could use:

 Sub CheckForError()

 'If the name Golf refers to an error value, such as #REF! or #N/A,
 If IsError(Evaluate(Names("Golf").RefersTo)) Then
 'then show an error message to that effect,
 MsgBox "Golf is an error name!"
 Else
 'otherwise state that the name refers to a good reference.
 MsgBox "Golf is OK!"
 End If
 End Sub

If the name refers to an error value, the IsError test will be true and the
error message box will be displayed. Otherwise, the OK message box will be
displayed. For example, if the name is Golf, which refers to =#N/A, the
error message box will be displayed. Using any of the other example names
will result in the OK message box.

Additional reference words: 5.00

XL5: Range.EntireRow May Return Incorrect Result
Article ID: Q108518
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, the Range.EntireRow method may return
an incorrect result if the Range is a nonadjacent selection. For
example, if the current Range is the nonadjacent selection
A1:A3, C11:C13, the Range.EntireRow method will return
$1:$13, not $1:$3,$11:$13 as would be expected.

This also occurs when you use the Range.EntireColumn method to return
entire columns when the Range is nonadjacent.

MORE INFORMATION
================

You can create a nonadjacent selection by selecting a range and then
selecting another range while holding down the CTRL key on your keyboard or
by using Microsoft Excel version 4.0 or Visual Basic commands that select
two or more ranges at the same time.

To return the correct rows or columns in a selection when the selection is
nonadjacent, you must separate the selection into Areas, where an Area is
defined as a single piece of a nonadjacent selection. This process is
illustrated in the Visual Basic code example below.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

NOTE: To convert this example to work with columns, use "Column" in place

of "Row."

To use the SelectRows subroutine, select any combination of cells on
sheet1. (This example assumes the current selection is
A1:A3,C11:C13 on Sheet1.) Then, choose Macro from the Tools
menu, select the name SelectRows from the list of macro names, and
choose Run.

'--
Option Explicit

Sub SelectRows()
 'Dimension some variables.
 Dim Counter As Integer, X As Variant, Y As Variant
 Sheets("Sheet1").Activate 'ensure the worksheet is active
 'Sets range X equal to the current selection.
 Set X = Selection
 'Initializes range Y equal to the first Area in X.
 Set Y = X.Areas(1)
 'Iterate through the loop once for each Area (nonadjacent piece)
 'of the range X.
 For Counter = 1 To X.Areas.Count
 'Set Y equal to the union of its previous range and the range of
 'the rows which encompass the current Area.
 Set Y = Application.Union(Y, X.Areas(Counter).EntireRow)
 Next 'loop until all done
 Y.Select 'select the range Y
End Sub
'--

For example, if you select the range A1:A3,C11:C13 on worksheet
Sheet1 and then run the SelectRows subroutine, the subroutine determines
how many Areas there are in the selection (there are two: A1:A3 and
C11:C13), determines which combination of rows encompasses each Area
($1:$3, $11:$13), and selects the range $1:$3,$11:$13.

Additional reference words: 5.00 5.0

XL5: Running Subroutines and Macros from Visual Basic
Article ID: Q108519
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, you can run Visual Basic subroutines and
Microsoft Excel version 4.0 macros from a Visual Basic subroutine by using
the Application.Run and Application.ExecuteExcel4Macro methods. You can
also run Visual Basic subroutines with the Call method or by entering the
name of a subroutine on a line by itself.

This article illustrates several methods that you can use to run
subroutines and Microsoft Excel version 4.0 macros from Visual Basic in
Microsoft Excel.

MORE INFORMATION
================

To Use the Application.Run Method

You can use the Application.Run method to run Visual Basic subroutines or
Microsoft Excel version 4.0 macros from other Visual Basic subroutines. The
Application.Run method requires one named argument: the name of the macro
or subroutine to be run. (However, other optional arguments may also be
included.) This name can be a text string (for example, "TestXLM") or it
can be a variable that is equal to the name of the macro.

For example, to run an Microsoft Excel version 4.0 macro called TestXLM,
you could use this method:

 Application.Run ("TestXLM")

If you have the variable "MacroToRun", whose value is equal to
"TestXLM", you could use this method:

 Application.Run (MacroToRun)

To Use the Application.ExecuteExcel4Macro Method
--

You can also use the Application.ExecuteExcel4Macro method to run Microsoft
Excel version 4.0 macros or other Visual Basic subroutines, but the syntax
is somewhat different. To use Application.ExecuteExcel4Macro to run a macro
or subroutine, you must also include the Microsoft Excel version 4.0 RUN()
function, as in the following examples:

 Application.ExecuteExcel4Macro "RUN(""TestXLM"")"

 -or-

 Application.ExecuteExcel4Macro "RUN(""" & MacroToRun & """)"

Note that when you use Application.ExecuteExcel4Macro you must use
quotation marks. For example, to use the RUN() function, you must enclose
the name of the argument in quotation marks:

 RUN("TestXLM")

Because the entire string must also be enclosed in quotation marks, when
you add quotation marks to the outside of the string, you must also add an
additional quotation mark adjacent to each quotation mark within the
string. The resulting string is as follows:

 "RUN(""TestXLM"")"

The Application.ExecuteExcel4Macro command that uses a variable inside
the RUN() function is more complex than the equivalent Application.Run
method. For the command to be properly evaluated, the macro string
must be entered as:

 "RUN(""" & MacroToRun & """)"

This command is evaluated as

 RUN("" & MacroToRun & "")

which is a valid Microsoft Excel version 4.0 macro command.

To Use the Call Method

The Call method may be used to run Visual Basic subroutines, but not
Microsoft Excel version 4.0 macros. For example, to run the subroutine
TestVBSub, you would use this method:

 Call TestVBSub

Note that you cannot pass a variable name to the Call method. For example,
if you have the variable "SubToRun", whose value is equal to "TestVBSub",
you cannot run the TestVBSub subroutine with the following:

 Call SubToRun

To Run a Subroutine Using Only Its Name

You can also run a Visual Basic subroutine by entering its name on a line
by itself. For example, if you want your subroutine to run the TestVBSub
subroutine, you would enter

 TestVBSub

on a line by itself. When that line in the subroutine is executed, it will
run the TestVBSub subroutine.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

To create six subroutines that illustrate the most common methods you can
use to run a Visual Basic subroutine or Microsoft Excel version 4.0 macro
from another Visual Basic subroutine, do the following:

1. In a new workbook, insert a Microsoft Excel 4.0 macro sheet called
 Macro1 and a Visual Basic module called Module1.

2. On the macro sheet, enter the following macro:

 A1: TestXLM
 A2: =ALERT("TestXLM works!")
 A3: =RETURN()

 This macro displays an alert box.

3. On the macro sheet, select cell A1.

4. From the Insert menu, choose Name, and then choose Define.

5. Verify that the following information appears in the Define Name dialog
 box:

 - The Names In Workbook box contains the name TestXLM.
 - The Refers To box contains the reference =Macro1!A1.
 - The Command option is selected under Macro.

 When the settings are as specified above, choose OK to define the name
 of the macro.

6. In Module1, enter the following subroutines:

'--
Option Explicit

'The TestVBSub subroutine displays a message box: it is the Visual
'Basic equivalent of the TestXLM macro shown above.

Sub TestVBSub()
 MsgBox "TestVBSub works!" 'displays a message box
End Sub

'The Test1 subroutine makes use of the Application.Run method with
'hard-coded macro/subroutine names.

Sub Test1()
 Application.Run ("TestVBSub")
 Application.Run ("TestXLM")
End Sub

'The Test2 subroutine makes use of the Application.Run method with
'variable macro/subroutine names.

Sub Test2()
 Dim SubToRun As String, MacroToRun As String
 SubToRun = "TestVBSub"
 MacroToRun = "TestXLM"
 Application.Run (SubToRun)
 Application.Run (MacroToRun)
End Sub

'The Test3 subroutine makes use of the Application.ExecuteExcel4Macro
'method with hard-coded macro/subroutine names.

Sub Test3()
 'Note the extra quotation marks which are contained within the RUN
 'statements. These are required in order for the command to evaluate
 'properly.
 Application.ExecuteExcel4Macro "RUN(""TestVBSub"")"
 Application.ExecuteExcel4Macro "RUN(""TestXLM"")"
End Sub

'The Test4 subroutine makes use of the Application.ExecuteExcel4Macro
'method with variable macro/subroutine names.

Sub Test4()
 Dim SubToRun As String, MacroToRun As String
 SubToRun = "TestVBSub"
 MacroToRun = "TestXLM"
 'Note the extra quotation marks which are contained within the RUN
 'statements. These are required in order for the command to evaluate
 'properly.
 Application.ExecuteExcel4Macro "RUN(""" & SubToRun & """)"
 Application.ExecuteExcel4Macro "RUN(""" & MacroToRun & """)"
End Sub

'The Test5 subroutine uses the Call method with hard-coded
'subroutine names.

Sub Test5()
 Call TestVBSub
End Sub

'The Test6 subroutine runs the TestVBSub subroutine because its name is

'entered on a line by itself.

Sub Test6()
 TestVBSub
End Sub
'--

When you run Test1, Test2, Test3, or Test4, two alert boxes will appear
with the messages "TestVBSub works!" and "TestXLM works!" When you run
Test5 or Test6, one alert box will appear with the message "TestVBSub
works!"

Additional reference words: 5.00

XL5: Macro to Add a Number to a Selected Cell
Article ID: Q108642
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, to add a number to an existing number and
put the result into the same cell, you can use a Visual Basic procedure or
a Microsoft Excel 4.0 macro.

MORE INFORMATION
================

The following Visual Basic procedure uses the active cell, asks for the
number to be added to the existing cells value, and places the result back
into the active cell:

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

'---
Sub AddToCell()

 ' ActiveCell.Value places the value or formula into the active cell
 ' on the active worksheet.
 '
 ' ActiveCell.Value returns the value in the active cell of the active
 ' window.
 '
 ' InputBox calls up the Excel input box for you to type in the number
 ' to be added to the original value. Val takes the text string
 ' returned from the input box and turns it into a number.

 ActiveCell.Value = ActiveCell.Value + Val(InputBox("Enter a Number",_
 default:=1))

End Sub
'---

REFERENCES
==========

For more information about ActiveCell.Value, choose Programming With
Visual Basic from the Help Contents and then choose the Search button and
type:

 ActiveCell

Additional reference words: 5.00

XL5: OLE Automation Err Msg: Method Not Applicable
Article ID: Q108661
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
 - Microsoft Visual Basic version 3.0
--

SYMPTOMS
========

When you run code in a Microsoft Visual Basic version 3.0 application and
the code uses a method or property of an object linking and embedding (OLE)
automation object, you may receive the following error message

 Method not applicable for this object

CAUSE
=====

Some of the methods and properties of OLE Automation objects are
keywords in Visual Basic version 3.0 and will cause the error
message above when you use them in a Visual Basic application.

WORKAROUND
==========

To use a method or property of a Microsoft Excel object in a Visual
Basic application when the method or property is a Visual Basic
keyword, use square brackets ([]) around the keyword in the Visual
Basic code. For example, to use the Close method of the Microsoft
Excel Workbooks object in a Visual Basic application, use the
following syntax:

 XL.Workbooks(1).[close]

MORE INFORMATION
================

OLE Automation is an industry standard that applications use to expose OLE
objects to development tools, macro languages, and other containers that
support OLE Automation. A few of the objects exposed by Microsoft Excel are
workbooks, worksheets, and charts. These objects can be accessed with
Visual Basic commands.

You use Visual Basic commands to manipulate these objects by invoking
methods on the object or by getting and setting the objects' properties
(just as you would with the objects in Visual Basic).

Steps to Reproduce Behavior

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,

including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide.

1. Run Microsoft Excel.

2. Run Microsoft Visual Basic version 3.0.

3. In Microsoft Visual Basic, enter and run the following code:

 ' Dimension variable xl as object type
 Dim xl as Object
 ' Activate Microsoft Excel and assign to variable xl
 Set xl = GetObject(,"Excel.Application.5")
 ' Create a new workbook so we can close it
 xl.Workbooks.Add
 ' Close the workbook we just created
 xl.ActiveWorkbook.Close

The following error message appears

 Method not applicable to this object

even though Close is a method of the Microsoft Excel Workbooks object.

To make this piece of code work correctly, change the last line to:

 xl.ActiveWorkbook.[Close]

REFERENCES
==========

For more information about the GetObject Function, choose the Search
button in Microsoft Visual Basic Help and type:

 OLE Automation

Additional reference words: 5.00

Menus.Count Returns Different Number When Workbook Maximized
Article ID: Q108662
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In the Microsoft Visual Basic Programming System, Applications
Edition, the following code

 ActiveMenuBar.Menus.Count

returns a different number of menus on the active menu bar depending
on whether or not the active workbook is maximized.

CAUSE
=====

When the active workbook is maximized, the control menu appears next
to the File menu. Because this menu is counted by
ActiveMenuBar.Menus.Count, the number returned by the code will be
one greater for a maximized workbook than for a workbook that is
restored or minimized.

WORKAROUND
==========

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide.

To return the actual number of menus on the active menu bar, excluding the
control menu if the worksheet is maximized, use the following code.

Sample Visual Basic Code

Sub Menu_Count()
 ' Declare variable x as an Integer and MyMenu as an Object
 Dim x As Integer
 Dim mymenu As Object
 ' Set initial value of x to zero
 x = 0
 ' Use For Next loop to count number of menus
 For Each mymenu In ActiveMenuBar.Menus
 x = x + 1
 Next
 ' Display number of menus in a message box
 MsgBox x
End Sub
REFERENCES
==========

For more information about the Menu Bar Object, choose the Search
button in Visual Basic Online Help and type:

 menu bar object

Additional reference words: 5.00

XL5: Manually Recalculating a Single Cell or Range
Article ID: Q108799
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, the Calculate Now command on the Options
menu causes every cell in the open worksheet to be recalculated (even when
calculations are set to manual).

The following information discusses three ways to recalculate a single cell
or range without causing the entire document to be recalculated.

MORE INFORMATION
================

Method 1

1. Position the insertion point in the cell that you want to recalculate.

2. Press the F2 key.

3. Press ENTER.

To recalculate only the cells in a single array, do the following:

1. Select one cell in the array.

2. From the Edit menu, choose Go To and choose Special.

3. Select Current Array.

4. Press the F2 key.

5. Press CTRL+SHIFT+ENTER. These steps reenter the formula in the array,
 updating the values they return.

Method 2

1. Be sure calculation is set to manual. To do this, choose Options from
 the Tools menu, select the Calculation Tab and select the Manual option.
 Then choose OK to accept the change.

2. From the Edit menu, choose Replace.

3. In the Find What box, type "=" (without quotation marks) and in the
 Replace With box type "=".

4. Choose Replace (not Replace All).

NOTE: To recalculate a selected range rather than a single cell, choose
Replace All.

Method 3 - Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

To recalculate the current cell, use the following procedure:

Sub Calc()
 ActiveCell.Calculate
End Sub

To recalculate a range on the active worksheet, use the following
procedure:

Sub Calc_Range()
 Range("A1:D1").Calculate
End Sub

Additional reference words: 5.00

XL5: Cells.Find Returns Error When No Match Found
Article ID: Q108892
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

When you run a recorded Visual Basic macro, the Cells.Find, columns.find,
Selection.Find, and Range.Find functions will produce the following macro
error if no data is found:

 Runtime error '91':
 Object variable not Set

This macro error occurs because the Visual Basic Find method returns
a NULL value which makes activating a cell impossible.

WORKAROUND
==========

The following Visual Basic example will attempt to find the text
string "mystring" and produces an alert message which will not cause
the macro to halt. The example can be entered into a Microsoft Excel
module sheet "as is" or on one line without the underscore characters.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Sub Find_MyString

If Not Application.ExecuteExcel4Macro _
(String:="FORMULA.FIND(""mystring"",1,2,1,1,FALSE)") _
Then MsgBox "Cannot Find Matching Data."

End Sub

Additional reference words: 5.00 VB

XL5: Visual Basic Macro to Hide and Restore All Toolbars
Article ID: Q109064
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, the following Visual Basic Code will show
all, hide All, or toggle the currently displayed toolbars Visible property.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

'This is a sub-routine to Hide all of the toolbars.

Sub HideAllToolbars()
 ' loop variable
 Dim i As Integer
 ' Loop through the Total number of toolbars
 For i = 1 To Application.Toolbars.Count
 'Hide each toolbar
 Application.Toolbars(i).Visible = False
 ' end of loop
 Next i
End Sub

'This is a sub-routine to show all of the toolbars.

Sub ShowAllToolbars()
 'loop variable
 Dim i As Integer
 'Loop through the Total number of toolbars

 For i = 1 To Application.Toolbars.Count
 'Show each toolbar
 Application.Toolbars(i).Visible = True
 'end of loop
 Next i
End Sub

' The following routine when run the first time will store all of the
' toolbars visible property then hide all of the visible toolbars. When
' the routine is run a second time, it will restore the toolbars to their
' original state the first time the code was executed.

' This subroutine will toggle all currently visible toolbars to hidden
' and when rerun will restore the toolbars

Sub ToggleToolbars()
' Creates a 20 element array to keep track of current toolbar settings on
' the first iteration through the routine.
' This limits this routine to 20 toolbars total (increasing this number
' will allow for more custom toolbars).

Static CurrentToolSet(20) As Boolean
Static Flag As Boolean
Dim i As Integer
'If this is the first time through the routine do this
If Flag = False Then
 ' Loop through all of the toolbars
 For i = 1 To Application.Toolbars.Count
 'Store the visible property of each toolbar in the array
 'CurrentToolSet
 CurrentToolSet(i) = Application.Toolbars(i).Visible
 'Hide all of the toolbars
 Application.Toolbars(i).Visible = False
 ' End of loop
 Next i
 ' Set flag to true to skip this section next time through
 Flag = True
Else
 'loop through all of the toolbars
 For i = 1 To Application.Toolbars.Count
 'restore toolbar setting to the original value as saved in the
 'Array
 Application.Toolbars(i).Visible = CurrentToolSet(i)
 'End of loop
 Next i
 'Set flag back to false to hide visible toolbars on the next time
 'this is run
 Flag = False
'End of block if statement
End If
End Sub

Additional reference words: 5.00 tool bar

XL5: Macro to Open the Most Recently Used File
Article ID: Q109113
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, you can access a list of the four most
recently used files by selecting the File menu. The following macro opens
the first file in that list:

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide." Further
description goes under this heading. You should provide details of
how the feature works. If it's by design but not what you would
normally expect to happen, describe what does occur and why (if you
have that information).

The following macro will open the most recently used file. Before you run
this macro you must make sure that the most recently used file list is
turned on. To verify that this option is selected, choose Options from the
Tools menu and then select the General tab. Make sure that the Recently
Used File List box is checked.

Sub Open_File_Macro()
 'sets a variable for "item" to the last most recently
 'open file
 'the following two lines should be entered as one single line
 Item = MenuBars("Worksheet").Menus("file")._
 MenuItems("file list").Caption
 'sets item to "file" and deletes the first 3 letters
 'from the file list
 file = Mid(Item, 4, 24)

 Workbooks.Open filename:=file 'opens the file
End Sub

Additional reference words: 5.00

XL5: All PageSetup Settings Are Recorded into Macro
Article ID: Q109205
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel version 5.0, if you record a Visual Basic macro which
includes a Page Setup command, all of the Page Setup settings are recorded.

Because of this, you may find that running a recorded Visual Basic
PageSetup function may take an unusually long amount of time, up to two
minutes or more (depending on the speed of your computer). Also, the screen
may flicker or blink repeatedly while the function is being executed.

CAUSE
=====

If you record a Page Setup in a Visual Basic macro, all the settings
are recorded because of the way in which page setup information is returned
to the macro recording system.

The flickering occurs because of the way in which the PageSetup function
updates the sheet's different Page Setup settings. The amount of flickering
is related to the number of Page Setup settings you change with the
PageSetup function: changing more settings results in more flickering.

WORKAROUND
==========

After you record a Visual Basic PageSetup function, you will probably want
to eliminate unneeded settings from the PageSetup function.

To prevent the flickering, set the Application.ScreenUpdating property to
False before executing your PageSetup function. Then, when the PageSetup
function has completed, you can set the Application.ScreenUpdating property
back to True to reenable screen redraws.

MORE INFORMATION
================

Visual Basic Code Examples

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided "as is" and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by

an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the Visual Basic "User's
Guide."

The first Visual Basic code example shows the results of recording a Visual
Basic PageSetup function.

The second Visual Basic code example shows one way in which you can prevent
the screen from flickering or blinking while a PageSetup function is being
executed.

Example One - Recording a Page Setup:

 1. Create a new workbook.

 2. Activate a worksheet in the workbook.

 3. From the Tools menu, choose the Record Macro submenu, and then choose
 Record New Macro.

 4. In the Record New Macro dialog box, select the Options button.

 5. In the language section, make sure that the "Visual Basic" option
 button is selected. In the "Store in" section, make sure the "This
 Workbook" option button is selected.

 6. Select OK to begin recording.

 7. From the File menu, choose Page Setup.

 8. In the Page Setup dialog box, choose OK.

 9. From the Tools menu, choose the Record Macro submenu, and then choose
 Stop Recording.

10. Activate the new Visual Basic module. Your recorded subroutine should
 appear similar to the following (comments have been added for
 explanation--they are not actually recorded).

'--
Sub Macro1()
 With ActiveSheet.PageSetup 'this is the first part
 .PrintTitleRows = ""
 .PrintTitleColumns = ""
 End With
 ActiveSheet.PageSetup.PrintArea = "" 'this is the second part
 With ActiveSheet.PageSetup 'this is the third part
 .LeftHeader = ""
 .CenterHeader = "&A"
 .RightHeader = ""
 .LeftFooter = ""

 .CenterFooter = "Page &P"
 .RightFooter = ""
 .LeftMargin = Application.InchesToPoints(0.75)
 .RightMargin = Application.InchesToPoints(0.75)
 .TopMargin = Application.InchesToPoints(1)
 .BottomMargin = Application.InchesToPoints(1)
 .HeaderMargin = Application.InchesToPoints(0.5)
 .FooterMargin = Application.InchesToPoints(0.5)
 .PrintHeadings = False
 .PrintGridlines = True
 .PrintNotes = False
 .CenterHorizontally = False
 .CenterVertically = False
 .Orientation = xlPortrait
 .Draft = False
 .PaperSize = xlPaperLetter
 .FirstPageNumber = xlAutomatic
 .Order = xlDownThenOver
 .BlackAndWhite = False
 .Zoom = 100
 End With
End Sub
'--

When the PageSetup function is recorded, the settings are recorded in
three parts:

1. The first part is a With-End With section which sets the PrintTitleRows
 and the PrintTitleColumns.

2. The second part sets the PrintArea.

3. The third part is a With-End With section, which sets all of the other
 settings.

If you do not actually want to change certain settings, such as .Draft, you
can remove those lines from the subroutine. For example, if you only want
to change the PrintTitleRows, the PrintArea, and the Orientation, you could
use the following:

 Sub Macro1()
 With ActiveSheet.PageSetup
 .PrintTitleRows = "$1:$3"
 .PrintArea = "A4:C100"
 .Orientation = xlLandscape
 End With
 End Sub

Since the other settings do not need to be changed, it is not necessary to
include them in the subroutine. (However, you must remove them yourself.)

Also, note that the entire PageSetup procedure can be incorporated into a
single With-End With section. It is not necessary for the PrintArea,
PrintTitleRows, or PrintTitleColumns settings to be changed separately from
the other settings--it is only recorded that way.

Example Two - Preventing Screen Flicker While PageSetup Executes:

The following subroutine demonstrates one way in which you may
prevent the screen from flickering while a PageSetup function is
being executed.

'--
Sub PreventScreenFlicker()

 'This line turns off screen updating.
 Application.ScreenUpdating = False
 'Apply each of the following properties to the active sheet's Page
 'Setup.
 With ActiveSheet.PageSetup
 .PrintTitleRows = "$1:$3" 'set print title rows
 .PrintTitleColumns = "$A:$C" 'set print title columns
 .LeftHeader = "" 'set the left header
 'More commands could appear before the End With. They are not
 'shown here in order to keep the example short.
 End With 'end of With section
 'Re-enable screen updating. This line is optional: you may not need
 'or want to re-enable screen updating.
 Application.ScreenUpdating = True
End Sub
'--

The subroutine turns off screen updating just before executing the
PageSetup function and then turns screen updating back on when the
PageSetup function is complete.

If screen updating is not turned off, as each line in the With section
(.PrintTitleRows, .PrintTitleColumns, and so forth) is executed, the screen
may flicker slightly.

Additional reference words: 5.00

XL5: Function Subroutines Can Show Message Boxes
Article ID: Q109208
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, you can use the MsgBox function to display
a message box in a Visual Basic function macro. The following Visual Basic
procedure demonstrates one way to do this.

NOTE: In earlier versions of Microsoft Excel it is not possible to display
a message box from a macro sheet.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following Visual Basic function subroutine illustrates one way to
display a message box in a function.

1. In a new Visual Basic module in a new workbook, enter the following
 subroutine:

'--
'This function accepts two arguments: X, an integer, and Y, an integer.
'It returns an integer.

Function Test(X As Integer, Y As Integer) As Integer
 'Multiply X by Y to get the value of Test.
 Test = X * Y
 'Shows the value of Test in a message box.
 MsgBox "The result is " & Test & "."
End Function

'--

2. In a new worksheet in the same workbook, enter the following
 formulas:

 A1: =Test(4,5)
 A2: =Test(3,6)
 A3: =Test(20,20)

 After you enter each formula, a message box will be displayed. The
 messages shown are the following:

 The result is 20.
 The result is 18.
 The result is 200.

NOTE: If your Visual Basic function subroutine, includes the line

 Application.Volatile

a message box will be shown for each cell that uses the subroutine EVERY
TIME YOU RECALCULATE THE WORKSHEET. For example, if you insert the
Application.Volatile line into your function subroutine and then enter 500
formulas that use that subroutine, each time you recalculate the worksheet,
you will receive 500 message boxes. In this case, there is no way to
prevent the display of the message boxes as the worksheet is recalculated.

For this reason, it is recommended that you not use the MsgBox function and
Application.Volatile in the same function subroutine.

Additional reference words: 5.00

XL5 Err Msg: "Not Enough Memory" With Indirect Defined Names
Article ID: Q109209
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, defined names are normally limited to
20 levels of indirection. If you use a defined name that exceeds this
limit, you will receive the "Not enough memory" error message.

MORE INFORMATION
================

A level of indirection in defined names is created when one name refers
to another name or to a cell reference.

If you have the following names defined in a workbook (Book1)

 Name Refers to Level of indirection
 --

 Test1 =Sheet1!A1 1
 Test2 =Book1!Test1 2
 Test3 =Book1!Test2 3
 Test4 =Book1!Test3 4
 Test5 =Book1!Test4 5
 Test6 =Book1!Test5 6
 Test7 =Book1!Test6 7
 Test8 =Book1!Test7 8
 Test9 =Book1!Test8 9
 Test10 =Book1!Test9 10
 Test11 =Book1!Test10 11
 Test12 =Book1!Test11 12
 Test13 =Book1!Test12 13
 Test14 =Book1!Test13 14
 Test15 =Book1!Test14 15
 Test16 =Book1!Test15 16
 Test17 =Book1!Test16 17
 Test18 =Book1!Test17 18
 Test19 =Book1!Test18 19
 Test20 =Book1!Test19 20 (the limit)
 Test21 =Book1!Test20 21

where each line represents one level of indirection, and if you attempt to
use a name that exceeds the 20th level of indirection, you will
receive the "Not enough memory" error message.

You may also receive this error message if you try to delete a name
that has too many levels of indirection below it. For example, if you

try to delete the name "Test1", you may receive the error message
because the name "Test21" is 20 or more levels of indirection away.

Steps to Reproduce Problem

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

To create an example that demonstrates what can happen if you exceed the
limit of 20 levels of indirection, do the following:

1. Open a new workbook (Book1) that contains a Visual Basic module
 (Module1) and a worksheet (Sheet1) and does not contain any defined
 names. In the Visual Basic module, type the following:

 '--
 Option Explicit

 Sub CreateNames()
 'Dimension some variables.
 Dim X As Integer
 'Create the name "Test1", which refers to Sheet1!A1.
 ActiveWorkbook.Names.Add Name:="Test1", RefersTo:="=Sheet1!A1"
 'Iterate through the loop 20 times, creating the names "Test2"
 'through "Test21".
 For X = 2 To 21
 'Create the name "Test(X)", which refers to the name "Test(X-1)".
 'For example, Test2 refers to Test1, Test3 refers to Test2, etc.
 'IMPORTANT: These two lines should be entered as one line.
 ActiveWorkbook.Names.Add Name:="Test" & X, _
 RefersTo:="=Book1!Test" & X - 1
 Next 'loop until all done
 End Sub
 '--

2. To run the CreateNames() subroutine, position the insertion point in the
 line that reads Sub CreateNames() and press the F5 key.

 When you run the CreateNames subroutine, you will have 21 names defined
 on Sheet1. Each name Test[X], where [X] is a number from 2 to 21, refers
 to Test[X-1]. Test1 refers to Sheet1!A1.

3. On Sheet1, enter the following values:

 B1: =Test20
 B2: =Test21

 When you enter the formula =Test21, you will receive the "Not enough
 memory" error message message. This is because the name Test21 is at
 the 21st level of indirection relative to Test1, to which it ultimately
 refers. The "=Test20" formula works because Test20 is only at the 20th
 level of indirection relative to Test1.

4. From the Insert menu, choose Name, and then choose Define.

5. From the Names In Workbook list, select Test1 and choose the
 Delete button.

 Again, you will receive the "Not enough memory" error message. The
 name Test1 will not be deleted.

NOTE: If you delete the name Test21 first, you can delete Test1 because you
are then within the 20 levels of indirection limit.

Additional reference words: 5.00

XL5: Verifying the Value of a Check Box
Article ID: Q109418
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, check boxes can have one of three values:
xlOn, xlOff, or xlMixed.

To find the value of a check box, you can use Visual Basic code. An example
of how to do this is shown below. Or, if the check box has been linked to
a cell, you can use Visual Basic commands to determine the value of that
cell.

MORE INFORMATION
================

If a check box is linked to a cell on a worksheet, the cell will
display one of three different values:

 Value Check Box Status

 TRUE Selected (On)
 FALSE Cleared (Off)
 #N/A Mixed

To examine the value of the check box, examine the value of the cell
to which it has been linked.

To link a check box to a cell on a worksheet:

1. In the dialog sheet, select the check box.

2. From the Format menu, choose Object.

3. Select the Control tab.

4. In the Cell Link box, enter the appropriate cell reference. For
 example, "Sheet1!A1" (without the quotation marks).

5. Choose OK to accept the change.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure

is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following example assumes that you have a dialog sheet (Dialog1) that
contains one or more check boxes and is located in the same workbook as the
Visual Basic module. It checks the value of the check boxes, regardless of
whether they have been linked to cells.

To run the example, position the insertion point in the line that reads
"Sub ExamineCheckBoxes()" and either press the F5 key or choose Start
from the Run menu.

'--
Option Explicit

Sub ExamineCheckBoxes()

 'Declare the variable used as the For Each loop counter
 Dim Box as CheckBox

 'Iterate once for each check box in the dialog sheet.
 For Each Box in DialogSheets("Dialog1").CheckBoxes
 'Get the value of the current check box.
 Select Case Box.Value
 Case xlOn 'if the check box is ON
 MsgBox "Check box is on!" 'show the "On" message
 Case xlOff 'if the check box is OFF
 MsgBox "Check box is off!" 'show the "Off" message
 Case xlMixed 'if the check box is MIXED
 MsgBox "Check box is mixed!" 'show the "Mixed" message
 End Select
 'Repeat the loop until all done.
 Next Box
End Sub
'--

This subroutine will examine each check box in the dialog sheet and display
its value.

Additional reference words: 5.00

XL5: Cannot Use Array As Source Argument with SeriesCollection
Article ID: Q109575
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In the Microsoft Visual Basic Programming System, Applications
Edition, you cannot add a new series to a chart in Microsoft Excel
using an array as the Source argument with the Add method of the
SeriesCollection object.

WORKAROUND
==========

To add a new series to a chart in Microsoft Excel using the Add
method of the SeriesCollection object, use a Range as the Source
argument. For example, to add the range C1:C4 on Sheet1 as a new
series to the active chart, use the following syntax:

 ActiveChart.SeriesCollection.Add source:=Sheets("Sheet1").Range("C1:C4")

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide.

MORE INFORMATION
================

The information in the Visual Basic Reference in Help incorrectly
states that the source argument of the Add method (SeriesCollection)
specifies the new data and can be either a Range or an array of data
points. However, if you specify the new data as array of data points,
you receive the following error message and your data points are not
added to the chart:

 Run-time error '1004':

 Reference is not valid.

REFERENCES
==========

For more information about the Add Method (SeriesCollection), choose
the Search button in Help and type:

 Add Method

For more information about the Array Function, choose the Search
button in Help and type:

 array

Additional reference words: 5.00

XL5: Branching to Other Sections of Code with GoTo and Call
Article ID: Q109780

The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0

SUMMARY
=======

In Microsoft Excel version 5.0, you can use the GoTo and Call statements to
branch to other sections of a Visual Basic procedure.

NOTE: In earlier versions of Microsoft Excel, you can do this with the
GOTO() and RUN() functions.

MORE INFORMATION
================

GoTo

The GoTo statement jumps to and executes the instructions at the
specific line label and continues executing until the end of the
program is reached.

Call

The Call statement runs a procedure and then returns to the line
immediately after the Call statement in the originating procedure. The Call
statement can also pass arguments of any declared data type to the called
procedure and can transfer control to a sub procedure, function procedure,
dynamic link library (DLL) procedure, or Macintosh code resource procedure.

Visual Basic Examples

The following examples demonstrate how to use GoTo and Call.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for

Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Example 1--The Difference Between Call and GoTo
--

The following Visual Basic procedure demonstrates the difference between
using the GoTo statement and the Call statement.

Sub One()
 MsgBox ("One()") 'Displays message box
 ' Sends control to Line10 below
 ' The GoTo Line10 statement directs the program to branch to the
 ' line labeled "Line10:", the message box "unexecuted code" is skipped.
 GoTo Line10
 ' This message box is not displayed
 MsgBox ("unexecuted code")
Line10:
 ' Displays message box
 MsgBox ("Line10 of One()")
 ' The "Call Two()" line executes the subroutine defined as "Two()",
 ' sends a message box indicating that the subprocedure is executing,
 ' then returns to Sub One executing the line immediately after the Call
 ' statement.
 ' Call made to subprocedure named two()
 Call Two
 ' Message box displayed
 MsgBox ("back to One(); returning from Two()")
End Sub

Sub Two()
 'Message box displayed
 MsgBox ("Two()")
End Sub

NOTE: The sample code above does not pass any arguments.

Example 2--An Alternative to the Call Statement

The following Visual Basic code makes a call to a another subprocedure
without using the Call statement

Sub One()
 MsgBox ("One()") 'Message box displayed
 two 'Call made to subprocedure named two()
 MsgBox ("return from Two()") 'Message box displayed
End Sub

Sub Two()
 MsgBox ("Two()") 'Message box displayed
End Sub

Example 3--Using GoTo for Conditional Branching

The following code shows how you can combine the IF...Then...Else statement
with the GoTo statement to provide more branching options or to create the
ability to return to a specific location after the GoTo is executed.

Sub GetInput()

 DIM number as Integer ' used for input variable
 'User input requested. Val() to turn input text into a number.
 number = Val(InputBox("Enter a 1 or a 2."))
 'Condition that is evaluated based on user input
 If number = 1 Or number = 2 Then
 GoTo Line1
 Else
 GoTo Line2
 End If
Line1:
 MsgBox ("Great! You entered a " & number & ".")
 GoTo LastLine
Line2:
 MsgBox ("Sorry, you must enter a 1 or a 2.")
LastLine:
 MsgBox ("End of program.")
End Sub

Additional reference words: 5.00

XL5: Visual Basic and the Microsoft Excel Version 4.0
Article ID: Q109976

--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel, there are two programming languages: the Microsoft
Visual Basic Programming System, Applications Edition, and the Microsoft
Excel version 4.0 macro language. Microsoft included both languages to ease
the transition to Visual Basic. Although both languages give you complete
control of Microsoft Excel, you should use the Visual Basic language
because it is more flexible and powerful than the Microsoft Excel version
4.0 macro language. In addition, Visual Basic will be the only programming
language offered in future versions of Microsoft Excel.

In Microsoft Excel version 5.0, you can still run your existing
Microsoft Excel 4.0 macros. You can also combine Visual Basic and
Microsoft Excel version 4.0 macros: you can run your existing version
4.0 macros from Visual Basic procedures and you can run Visual Basic
procedures from your version 4.0 macros.

Future versions of Microsoft Excel will still support running your
Microsoft Excel version 4.0 macros, but will not include enhanced
Microsoft Excel version 4.0 macro language commands for new features.

The following is a list of resources you can use to learn Microsoft Visual
Basic for Microsoft Excel.

Online Help

Online help is provided for all Visual Basic and Microsoft Excel
version 4.0 macro commands to help make the transition easy.

Also provided is an online reference of Visual Basic Equivalents For
Macro Functions and Commands. To access this list, do the following:

1. In Microsoft Excel, bring up the Help Contents screen by choosing
 Contents from the Help menu.

2. Choose the Reference Information icon.

3. Under General Reference, choose Microsoft Excel Macro Functions
 Contents.

4. Choose Visual Basic Equivalents for Macro Functions and Commands.

Reference Materials

"Microsoft Excel Visual Basic for Applications Reference"
Microsoft Corporation
$24.95 ($33.95 Canada)
ISBN 1-55615-624-3
(Available February 1994)

"Microsoft Excel Visual Basic for Applications Step by Step"
Reed Jacobson,
$29.95 ($39.95 Canada)
ISBN is 1-55615-589-1
(Available January 1994)

Microsoft Press books can be found in bookstores everywhere, through
CompuServe electronic mail (type GO MSP), or you can order direct by
calling (800) MSPRESS. In Canada, call (416) 293-8464, extension 340.

If you are outside the United States, contact the Microsoft subsidiary for
your area. To locate your subsidiary, call Microsoft International Customer
Service at (206) 936-8661.

Excel 5 Courseware Developer's Kit (CDK)
Microsoft Corporation
$895 US ($1195 Canada)
(Win) ISBN 1-55615-719-3
(Available in February)

Includes license agreement (grants permission to customize the
student book, the student practice files, and the instructor outline
files for reproduction), eight disks (student practice files and
student book on disk), Instructor's guide, certificate of completion
master copy, hardcopy overhead and handout masters, and a template for
creating your own lessons

Microsoft Excel 5 Software Development Kit
$49.95 ($69.95 Canada)
ISBN 1-55615-632-4
(Available in April)

Additional reference words: 5.00

XL5: Using Visual Basic to Exit Windows From Within Excel
Article ID: Q110005
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

You can exit Windows from within Microsoft Excel version 5.0 by using a
Visual Basic macro. The procedure below makes a call to a Windows DLL
(dynamic-link library) that is similar to choosing the Exit command from
the File menu in Program Manager.

Other Windows applications and instances of Microsoft Excel will prompt you
to confirm that you want to quit (just as if you had exited Windows
manually). If you choose Cancel when you are prompted to save a file, the
exit request is canceled as well.

MORE INFORMATION
================

CAUTION: The Declare, Call and Register Functions listed in the following
macro are very sensitive. If used incorrectly, these functions may cause a
general protection fault (GPF) in Windows or cause other software
problems.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty, either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following procedure will allow you to exit Windows from Microsoft
Excel:

'The following Declare statement should be entered on a single line
Declare Function ExitWindows Lib "User" (ByVal dwReturnCode As Long,
ByVal wReserved As Integer) As Integer

Sub ExitWin
 Call ExitWindows(1,0)
End Sub

This will cause Windows to close all open applications immediately
and return to MS-DOS.

CAUTION: Any sheets that you are editing in the current instance of
Microsoft Excel (the instance from which the macro is run) will be closed
without confirmation. You will lose any changes made since the last time
these files were saved. Other Windows applications and instances of
Microsoft Excel prompt you for confirmation (just as if you had exited
Windows manually).

REFERENCES
==========

Microsoft Windows SDK
Microsoft Visual Basic 3.0 Professional - WINAPI31.HLP help file

Additional reference words: 5.00 Sdk dynamic link

XL5: Update Remote References Option Selected by Default
Article ID: Q110006
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

When you open a workbook in Microsoft Excel version 5.0, the Update Remote
References calculation setting for the workbook is usually selected. The
exception to this rule occurs when a workbook has been linked to an
external data source and you do not allow Microsoft Excel to update links
to the external data source.

MORE INFORMATION
================

The Update Remote References calculation setting determines whether
or not Microsoft Excel updates formulas that include references to
external data sources (such as Microsoft Word for Windows documents
or Microsoft Access databases). Note that Microsoft Excel workbooks
and documents are NOT external data sources.

When you open a workbook, the Update Remote References setting will be set
according to the following table:

 Update Remote
 Condition References Check Box
 --

 Workbook not linked to any other Selected
 documents

 Workbook linked to other workbooks Selected
 or Microsoft Excel documents

 Workbook linked to external data Cleared (not selected)
 source and you select No when you
 receive the prompt "This document
 contains links. Re-establish links?"

 Workbook linked to external data Selected
 source and you select Yes when you
 receive the prompt "This document
 contains links. Re-establish links?"

To clear the Update Remote References setting in the active workbook:

1. From the Tools menu, choose Options.

2. Select the Calculation tab.

3. Clear the Update Remote References check box.

4. Choose OK to accept the change.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following Visual Basic code example assumes that you have a file called
TEST.XLS, which is located in the C:\EXCEL directory. The example opens the
TEST.XLS file and then clears (turns off) the Update Remote References
check box. As the subroutine opens the file, it also prevents Microsoft
Excel from updating any of the workbook's external or remote references.

'--
Sub Example()
 'The zero after updateLinks indicates that neither external nor
 'remote references should be updated when the file is opened.
 Workbooks.Open fileName:="C:\EXCEL\TEST.XLS", updateLinks:=0
 'Turn off the Update Remote Referencessetting for the workbook.
 ActiveWorkbook.UpdateRemoteReferences = False
End Sub
'--

Note that the Update Remote References check box is not a universal
setting: if two workbooks are open, one workbook can have its Update Remote
References setting selected, while in the other workbook the check box is
cleared. However, when you open a workbook, its Update Remote References
check box will be selected, no matter how it was saved, unless it contains
links to an external data source.

Additional reference words: 5.00 calc

XL5: Can't Use Line Continuation Character in Some Locations
Article ID: Q110237

The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In the Microsoft Visual Basic Programming System, Applications Edition,
when you use the line-continuation character(_) in your procedure, you may
receive one of the following error messages:

 Syntax error

 -or-

 Invalid character

 -or-

 General protection (GP) fault (only if you use the line-continuation
 character within square brackets)

CAUSE
=====

The line-continuation character indicates that a logical line of code
is continued from one physical line in the procedure to the next.
Line continuation is detected in a Visual Basic procedure by
searching for a space followed by an underscore (_) at the end of a
line. These characters are then removed before the line of code is
parsed. However, you cannot use the line continuation character in
the following locations in your code.

Between Quotation Marks

 A = "This is an example of assigning a very long _
 string variable"

Between a Colon and an Equal Sign

 Cells.CheckSpelling CustomDictionary:="CUSTOM.DIC", IgnoreUppercase: _
 =False, AlwaysSuggest:=True

Within Square Brackets

 [Test _
]

WORKAROUND
==========

You should only use the line continuation character in your procedure
when you have a very long line of code that is wider than your
screen. In general, you can use the line continuation character in
the following locations:

 - Before or after a comma

 - Before or after an equal sign (except between a colon and equal sign)

 - Before or after a colon and an equal sign (:=)

 - Before or after an operator (such as &, +, -, LIKE, NOT, AND)

The following are examples of using the line continuation character
that do not cause an error message when they are run:

 A = "This is an example of assigning a very long " & _
 "string variable"

 A = _
 "This is an example of assigning a very long string variable"

 A _
 = "This is an example of assigning a very long string variable"

 Cells.CheckSpelling CustomDictionary:="CUSTOM.DIC", _
 IgnoreUppercase:=False, AlwaysSuggest:=True

 Cells.CheckSpelling CustomDictionary:="CUSTOM.DIC", IgnoreUppercase _
 :=False, AlwaysSuggest:=True

 Cells.CheckSpelling CustomDictionary:="CUSTOM.DIC", IgnoreUppercase:= _
 False, AlwaysSuggest:=True

 ActiveSheet.PageSetup.LeftHeader = _
 "this is an example of a very long left header for your worksheet"

 Answer = NOT _
 (A<B)

NOTE: Do not use the line-continuation character within square
brackets. There is no workaround for this behavior.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that

code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide.

NOTE: Though you can type the lines in the above examples without the
line-continuation character as one physical line, type them exactly as
shown above to illustrate using the line-continuation character.

Additional reference words: 5.00 gpf

XL5: List of the Files You Need to Run Microsoft Excel
Article ID: Q110594
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

The following tables contain the filenames and descriptions of the files
that you need to be able to run the various components of Microsoft Excel
version 5.0.

Files needed to run Microsoft Excel:

Filename Description

COMMTB.DLL Microsoft Button Editor DLL
COMPOBJ.DLL OLE 2.0 Library
EXCEL.EXE Microsoft Excel Executable
MSFFILE.DLL Microsoft Find File Library
OLE2.DLL OLE 2.0 Library
OLE2DISP.DLL OLE Automation Library
OLE2NLS.DLL OLE NLS Library
 (Intl character set translation searching and sorting)
OLE2PROX.DLL OLE2PROXY 2.0 Library
SCP.DLL Code Page Translation Library
SDM.DLL Standard Dialog Manager
STDOLE.TLB OLE Type Library
STORAGE.DLL OLE 2.0 Library
 (docfile DLL)
TYPELIB.DLL OLE Automation Type Information Interfaces
XLINTL.DLL Microsoft Excel Localized Resources
XLEN50.OLB Microsoft Excel Object Library
VBAEN.DLL Visual Basic for Applications International Resources
VBAEN.OLB Visual Basic for Applications Object Library
VBA.DLL Visual Basic for Applications Development Environment

Files needed to run Help:

Filename Description
--

MAINXL.HLP - Microsoft Excel Main Help
SHARERES.DLL - Shared Resources
XLHELP.DLL - Microsoft Excel Help Extended Macros

Files needed to run Microsoft Query

Filename Description
--

COMMDLG.DLL - Common Dialogs Libraries
MSQUERY.EXE - Microsoft Query Executable
QRYINTL.DLL - Microsoft Query International DLL

For a list of all the files installed with Microsoft Excel 5.0,
including file size and location on the hard drive, open FILELIST.TXT
located in the Microsoft Excel directory.

MORE INFORMATION
================

Microsoft Excel requires that you have the Share program loaded on
your computer before you run Microsoft Excel. For more information
about the Share program, query on the following in the Microsoft
Knowledge Base:

 share.exe and load and must

Additional reference words: 5.00 required setup

XL5: GP Fault If REFTEXT() Refers to Closed Workbook
Article ID: Q110595
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel version 5.0, when you use the REFTEXT() function in a
Microsoft Excel 4.0 macro sheet, and the reference includes the name of a
closed workbook, you receive a general protection (GP) fault.

WORKAROUND
==========

To avoid receiving the GP fault when you use the REFTEXT() function and the
reference contains a workbook name, do the following:

1. Before you type the function in the macro, open the workbook you want to
 reference in the REFTEXT() function.

2. Before you run your macro, do either of the following :

 - Insert a command in your macro that opens the workbook before the
 REFTEXT() function runs.

 -or-

 - Manually open the workbook before running the macro.

To convert a reference to a reference in the form of text, you can
use the following Microsoft Visual Basic Programming System,
Applications Edition functions:

 ' Converts name on a workbook to reference in text form,
 ' where file$ is name of workbook containing name
 ' and ref$ is name to return reference for
 Function GetNameVal(file$, ref$)
 GetNameVal = GetObject(file$, "Excel.Sheet").Parent.Names(ref$)
 End Function

 ' Converts range reference to text
 ' file$ is name of workbook containing range
 ' sheet$ is name of worksheet containing range
 ' ref$ is range reference to convert to text
 Function GetRangeVal(file$,sheet$,ref$)
 GetRangeVal = _
 GetObject(file$,"Excel.Sheet").Parent.Sheets(sheet$).Range(ref$).Address
 End Function

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,

including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide.

MORE INFORMATION
================

The REFTEXT() function converts a reference to an absolute reference in
the form of text and is useful when you need to manipulate references
with text functions. This function uses the following syntax

 REFTEXT(reference, a1)

where reference is the reference you want to convert. When you type
this command in your macro and press ENTER, or when you run a macro
that contains this command, you receive a GP fault if the reference
argument contains the name of a closed workbook.

REFERENCES
==========

For more information about the Address Method, choose the Search
button in Help and type:

 Address Method

For more information about the Name Object, choose the Search button
in Help and type:

 Name Object

Additional reference words: 5.00

XL5: Macro to Find Directory in WIN.INI for an Application
Article ID: Q110692
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel 5.0 for Windows, you can create a macro to find the
default directory of any application that registers itself in the
[EXTENSIONS] section of the WIN.INI file. Given the three-character
extension for the application's file, the macro below uses the Microsoft
Windows dynamic-link libraries (DLLs) to return the default directory
information.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Sample Macro Code

Option Explicit

'Enter the following declare statement needs as a single line.

Declare Function GetProfileString Lib "KERNEL" (ByVal lpAppName As _
 String, ByVal lpKeyName As String, ByVal lpDefault As String, _
 ByVal lpReturnedString As String, ByVal nSize As Integer) As Integer

Sub Application_Directory()
 Dim Path As String * 255, Ext As String, Directory As String
 Dim Back_Slash As Integer, Length As Integer
 Ext = InputBox("Enter the 3 letter extension of the application.")
 'If Cancel was chosen then end procedure

 If Len(Ext) = 0 Then Exit Sub
 'Gets information from the WIN.INI file and stores in the "path"
 'variable
 Length = GetProfileString("Extensions", Ext, "", Path, Len(Path))
 'Tests for no application found
 If InStr(Path, "\") = 0 Then
 MsgBox "Application not found."
 Else
 Back_Slash = 255
 While Mid(Path, Back_Slash, 1) <> "\"
 Back_Slash = Back_Slash - 1
 Wend
 Directory = Left(Path, Back_Slash - 1)
 MsgBox "The directory of the application which uses the " & _
 "extension '" & Ext & "' is " & Directory & "."
 End If
End Sub

To run this macro, place the insertion point anywhere in the Sub
Application_Directory() line and either press F5 or choose Start from the
Run menu.

When you are prompted to enter a three-letter extension, enter an extension
and choose OK. The macro will use the Microsoft Windows API to determine
which directory contains the application that uses that three-letter
extension. For example, if you enter "xls" (without the quotation marks),
the message box will tell you where the Microsoft Excel application is
installed.

MORE INFORMATION
================

For information about creating a similar Visual Basic macro to find the
default printer and port assignments, query on the following words in the
Microsoft Knowledge Base:

 device and port and visual and basic and printer

REFERENCES
==========

Microsoft Windows SDK
Microsoft Visual Basic 3.0 Professional - WINAPI31.HLP help file

Additional reference words: 5.00 5.0 call register

XL5: Visual Basic Example to Delete Blank Rows
Article ID: Q110759
--
The information in this article applies to:

 - Microsoft Excel version 5.0
--

SUMMARY
=======

The following Visual Basic code locates blank cells within a range and
deletes the entire row that contains that cell. The code brings up a dialog
box that prompts the user for the total number of rows to process. The
macro begins at the active cell and moves down the specified number of
rows.

Visual Basic Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

'The following code deletes blank rows from the active worksheet.

Option Explicit

Dim Count
Dim i As Integer

Sub DelRow()

'Input box to determine the total number of rows in the worksheet.
Count = InputBox("Enter the total number of rows to process")

'Loops through the desired number of rows.
For i = 1 To Count
 'Checks to see if the active cell is blank.
 If ActiveCell = "" Then
 Selection.EntireRow.Delete

 'Decrements count each time a row is deleted. This ensures
 'that the macro will not run past the last row.
 Count = Count - 1
 Else
 'Selects the next cell.
 ActiveCell.Offset(1, 0).Select
 End If

Next i

End Sub

Note: you can also delete lines that contain spaces or other non-display
characters. To do this, change the line that reads

 If ActiveCell = "" Then

 -to-

 If Len(Trim(ActiveCell)) = 0 Then

and those lines will also be deleted.

Additional reference words: 5.00 VBAppCode

Computing Periodic Annual Interest Rate in Microsoft Excel
Article ID: Q110854
--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 2.x, 3.0, 4.0, 4.0a, 5.0
 - Microsoft Excel for the Macintosh, versions 2.x, 3.0, 4.0
 - Microsoft Excel for the OS/2, versions 2.x, 3.0
--

SUMMARY
=======

The RATE() function in Microsoft Excel, and the @RATE function in
Lotus 1-2-3 both return the periodic interest rate necessary for an
investment to grow to a specific value over a specified number of
compounding periods. However, in Microsoft Excel, RATE() assumes a
known stream of payments. If the payment amount per period is not
known, you can still the RATE() function, but you must modify it
slightly.

A manually entered formula must be used to determine the annualized
interest rate for an investment with more than one compounding period per
year. You can also use a custom function to make this calculation easier.

MORE INFORMATION
================

To use the RATE() function in Microsoft Excel when the payment per period
is not known, you must enter the number of compounding periods, the present
value as a negative number, and the future value.

For Example, an initial investment of $1,000, that has grown to $2,000 when
compounded quarterly over six years would return 2.93% per quarter when
entered as follows:

 =RATE(24,,-1000,2000)

To determine the annualized interest rate for an investment, use the
following formula

 =((FV/PV)^(1/N)^M)-1

where FV is the future value of an investment, PV is the initial
investment, N is the total number of compounding periods, and M is the
number of compounding periods per year.

The following formula, when used with the numbers from the previous
example, will return 12.2462% per year:

 =((2000/1000)^(1/24)^4)-1

To create a function macro in version 5.0

To create this function using Visual Basic, Applications Edition, enter the
following in a new Visual Basic module:

 Function Yearly_Rate(FV, PV, N, M) As Double 'Defines variables
 Yearly_Rate = ((FV / PV) ^ (1 / N)^M) - 1 'Performs computation
 End Function 'Ends function

To use the custom function:

1. Enter the following values on a worksheet:

 A1: 20000
 A2: 10000
 A3: 72
 A4: 12

2. In any blank cell, enter the following formula:

 =Yearly_Rate(A1,A2,A3,A4)

The annual interest rate returned is 12.2462%.

To create a function macro for versions 2.x, 3.0 and 4.0
--

You can use a custom function in Microsoft Excel to compute the
annual interest rate. To create this function enter the following in
a Microsoft Excel macro sheet:

 B1: Yearly_Rate
 B2: =RESULT(1)
 B3: =ARGUMENT("FV",1)
 B4: =ARGUMENT("PV",1)
 B5: =ARGUMENT("N",1)
 B6: =ARGUMENT("M",1)
 B7: =RETURN((((FV/PV)^(1/N)^M))-1)

After entering the above formulas on a Microsoft Excel macro sheet, define
it as a function macro. For information on defining function macros see the
Microsoft Excel User's Guide 2, pages 203-213.

Example

To compute the periodic interest rate for a $10,000 investment that
matures in six years, compounded monthly, with a maturity value of
$20,000, do the following:

1. Enter the following on a Microsoft Excel worksheet:

 A1: 20000
 A2: 10000
 A3: 72
 A4: 12

2. Select cell B1, choose Paste Function from the formula menu.

3. Select the User Defined category, and then scroll to the bottom of the
 Paste Function list.

4. Choose your custom function and choose the OK button.

 If the custom function macro is placed on a sheet named "RATE.XLM", the
 following formula will appear in cell B1.

 =RATE.XLM!Yearly_Rate(FV,PV,N,M)

5. Enter the values "A1", "A2", "A3", and "A4" (without the quotation
 marks)in place of the arguments in the formula (FV, PV, N, and M) and
 press ENTER.

The annual interest rate 12.2462% is returned.

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, pages 41-48
"User's Guide 2," version 4.0, pages 203-213
"Function Reference," version 4.0 pages 347-348
"Lotus 1-2-3 for DOS 2.3, @Functions and Macro Guide," Pages 69-70

Additional reference words: 2.0 3.0 4.0 4.0a 5.0 growth

XL5 Err: "Call to Undefined Dynalink" in Visual Basic Macro
Article ID: Q111089

The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0

SYMPTOMS
========

When a Microsoft Excel version 5.0 Visual Basic for Applications macro is
executing procedures to manipulate dialog boxes, you may receive the
following error message:

 Application Error, Call to Undefined Dynalink.

CAUSE
=====

The files OLE2CONV.DLL, OLE2DISP.DLL, and OLE2NLS.DLL are used by many
applications for OLE version 2.0 support. Applications other than Microsoft
Excel version 5.0 may install older versions of these files. These outdated
versions can cause the above error message.

Third Party Applications

The following applications are known to cause the above error message.

Corel Draw:

Corel Draw version 4.00.B3 installs OLE2DISP.DLL into the WINDOWS\SYSTEM
directory. The file is an older version than the OLE2DISP.DLL that ships
with Microsoft Excel version 5.0.

The older .DLL that Ships with Corel Draw version 4.0 does not recognize
the new procedures that Microsoft Excel version 5.0 can pass to OLE 2.0
objects (such as manipulating dialog boxes in Microsoft Excel 5.0). Listed
below are the OLE 2.0 DLL files that Corel Draw will overwrite.

 Corel Draw Date Size

 OLE2CONV.DLL 7/7/93 57328
 OLE2DISP.DLL 7/7/93 80384
 OLE2NLS.DLL 7/7/93 26624

RESOLUTION
==========

To resolve this problem, verify that the files OLE2CONV.DLL, OLE2DISP.DLL,
and OLE2NLS.DLL are the correct size for Microsoft Excel version 5.0. Below
is a list of these files and the sizes necessary for Microsoft Excel
version 5.0.

 Filename Date Size

 OLE2CONV.DLL 12-14-93 57328
 OLE2DISP.DLL 12-14-93 90144
 OLE2NLS.DLL 12-14-93 99200

If any of the above files are not the correct size, use the decompression
utility (DECOMP.EXE) that is shipped with Microsoft Excel version 5.0 to
decompress the files to the correct size. These files are located on Disk 7
of the 3.5-inch disks and Disk 9 of the 5.25-inch disks.

To use the decompression utility:

1. Copy the DECOMP.EXE file to your hard drive.

2. Exit Windows completely.

3. Change to the drive\directory that you copied DECOMP.EXE to.

4. Insert the Microsoft Excel disk containing the OLE*.* files into
 the appropriate floppy drive.

 For 3.5" HD disks, use Disk 7.

5. Decompress the file to your WINDOWS\SYSTEM directory.

 Below is an example of the syntax that would be used to decompress
 OLE2CONV.DLL:

 decomp a:\ole2conv.dl_ c:\windows\system\ole2conv.dll

Additional reference words: 5.00

XL5 OLE Automation: Workbook Hidden Using GetObject Function
Article ID: Q111247
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

If you use the GetObject function in a Microsoft Visual Basic version
3.0 procedure to open and save a Microsoft Excel workbook, the
workbook is saved as hidden and does not appear when you open the
workbook again.

WORKAROUND
==========

To avoid saving a workbook as hidden when you use the GetObject
function in a Visual Basic procedure to open and save the workbook,
unhide the workbook before saving it, as in the following Visual Basic
procedure:

 ' Dimension variable xl as Object type
 Dim xl As Object
 ' Set xl equal to Excel workbook as OLE Automation object
 ' and open file BOOK1.XLS located in c:\excel5
 Set xl = GetObject("C:\excel5\book1.xls")
 ' Make the hidden workbook visible
 xl.Parent.Windows("BOOK1.XLS").Visible = True
 ' Save the file BOOK1.XLS
 xl.Parent.Save
 ' Close the file BOOK1.XLS
 xl.Parent.[Close]
 ' Free the memory used for storing xl variable
 Set xl = Nothing

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide.

MORE INFORMATION
================

Note that the above behavior also occurs when you use the CreateObject
function in a Visual Basic, Applications Edition, procedure to open and
save a Microsoft Excel workbook. However, because Microsoft Excel has an
object library, use the functions defined in that library rather than the
GetObject or CreateObject function when you access Microsoft Excel objects
in a Visual Basic, Applications Edition, procedure.

Additional reference words: 5.00 3.00 B_VBasic

XL5: Calculating Elapsed Time for a Visual Basic Procedure
Article ID: Q111268
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Visual Basic, Applications Edition, you can time procedures,
statements, and functions by entering the Timer function before and after
the statements that you want to time.

MORE INFORMATION
================

The Visual Basic Timer function can be used to record the starting and
ending times for a series of commands. The following example sets the
variable StartTime to the current system time, runs the code to be timed,
then sets the variable EndTime to the current system time. Finally, the
elapsed time between StartTime and EndTime is printed to the debug window
using the Debug.Print command.

Example of Visual Basic Code

Sub ElapsedTime()
 Dim StartTime!, EndTime!
 StartTime! = Timer 'Stores start time in variable "StartTime"

 'Place code to be timed here

 EndTime! = Timer 'Stores end time in variable "EndTime"
 'Prints execution time in the debug window
 Debug.Print "Execution time in seconds: ", EndTime! - StartTime!
End Sub

The following Visual Basic macro creates a text file containing a list of
error messages that can be generated in Visual Basic, Applications Edition.
The amount of time it takes to accomplish this procedure will be displayed
in a message box.

Example of Visual Basic Code

Sub ErrorCodes()
 Dim StartTime!, EndTime!, x
 'creates a file of error messages
 startTime! = Timer 'Stores start time in variable "startTime"
 Open "vbaerror.txt" For Output As #1
 For x = 1 To 3300
 Print #1, x, Error$(x)
 Next x
 Close #1

 endTime! = Timer 'Stores end time in variable "endTime"
 'Shows Message Box with elapsed time
 MsgBox "Execution time in seconds: " + Format$(EndTime! - StartTime!)
End Sub

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, Chapter 8, page 158

Additional reference words: 5.00 timing calculating benchmark
bench mark

XL5: Can't Define Name with Same Name as a Subroutine
Article ID: Q111281
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, you cannot define a new name that is the
same as the name of a currently running Visual Basic subroutine. This is by
design.

MORE INFORMATION
================

When you run a Visual Basic subroutine, Microsoft Excel creates a temporary
name for the subroutine in memory. As long as this temporary name exists,
it is not possible to define a new name that is the same as the temporary
name. You can, however, redefine an existing name.

If you attempt to define a new name while an identically named subroutine
is running, you will receive the following error message:

 Run-time error '1004':
 Add method of Names class failed

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following subroutines illustrate the various types of situations
that may cause this error to occur. Enter the following subroutines
into a new module sheet in a new workbook.

To run the subroutines, position the cursor in the Sub line for the
subroutine you want to run and either press the F5 key or choose Start from
the Run menu.

'--
'The Test1 subroutine will fail if the name "Test1" does not already
'exist in the workbook.

Sub Test1()
 'Enter the following two lines as a single line.
 ActiveWorkbook.Names.Add Name:="Test1", _
 RefersToR1C1:="=Sheet1!R1C1:R10C10"
End Sub

'The Test2 subroutine runs the MakeName subroutine, which attempts to
'define the name "Test2". As with the above subroutine, it will fail if
'the name "Test2" does not already exist in the workbook.

Sub Test2()
 MakeName 'runs the Test2 subroutine
End Sub

Sub MakeName()
'Enter the following two lines as a single line.
 ActiveWorkbook.Names.Add Name:="Test2", _
 RefersToR1C1:="=Sheet1!R1C1:R10C10"
End Sub
'--

Additional reference words: 5.00 routine

XL5: Borders Method Applies Inconsistent Format
Article ID: Q111309
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel, if you use the Borders method in a Visual Basic
procedure to set the Weight or Color property of the borders of a
selection on a worksheet, the formatting of the selection may not be
consistent.

CAUSE
=====

When you use the Borders method on a selection, and there is already a
border around the selection, if you set only the Color or the Weight
property, two of the borders of the entire selection are formatted
differently that the rest of your selection.

Take for example the range B2:C4 on a worksheet that has been
formatted with a thick green outline border. If you run the following
procedure

 Sub Color()
 Dim x As Object
 Set x = Range("B2:C4")
 ' Set color of all cell borders in range to red
 x.Borders.Color = RGB(255, 0, 0)
 End Sub

the result is a thick red border around every cell in the selection,
but a thin red border on right and bottom of the selection.

If you run the following procedure

 Sub Weight()
 Dim x As Object
 Set x = Range("B2:C4")
 ' Set thickness of all cell borders to thin
 x.Borders.Weight = xlThin
 End Sub

the result is a thin automatic color border around every cell, but a
green border on the top and left of the selection.

WORKAROUND
==========

To avoid having unexpected results when you use the Borders method on
a selection of cells on a worksheet, apply both the Weight and Color

property as in the following example:

 Set x = Range("B2:C4")
 With x.Borders
 .Color = RGB(255, 0, 0)
 .Weight = xlThick
 End With

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide."

Additional reference words: 5.00

XL5: CreateObject Function Starts Invisible Instance of Excel
Article ID: Q111311
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

When you use the CreateObject function in a Visual Basic version 3.0
procedure to create a Microsoft Excel OLE Automation object, a new
instance of Microsoft Excel starts, but you cannot see it.

For example, the following Visual Basic command starts a new instance
of Microsoft Excel, but you cannot see it, and it does not appear in
the Task List:

 Set x = CreateObject("Excel.Application")

WORKAROUND
==========

If you want to see Microsoft Excel when you use the CreateObject
function to access the application object, use the Visible property
as in the following example:

 Sub Run_Excel
 Dim x As Object
 Set x = CreateObject("Excel.Application")
 x.Visible = true
 End Sub

MORE INFORMATION
================

When you use the CreateObject function to run Microsoft Excel, you
start a new hidden instance of Microsoft Excel. Because this new
instance uses memory and resources on your system, you should exit
the program within the same procedure that runs the instance. If you
don't exit the program in the procedure, the invisible instance runs
until you exit Microsoft Windows.

To free the memory used by the object variable assigned to the OLE
Automation object, set the variable equal to Nothing. The following
Visual Basic procedure uses the CreateObject function to start an
invisible instance of Microsoft Excel, quits the instance, and sets
the OLE Automation object variable equal to Nothing.

 Sub Run_Excel
 ' Dimension variable x as Object type
 Dim x As Object
 ' Set x equal to Excel object
 Set x = CreateObject("Excel.Application")
 ' Make running instance of Excel visible

 x.Visible = true
 ' Insert desired Excel commands here
 ' Quit Microsoft Excel
 x.Quit
 ' Set x equal to nothing to free memory object was using
 Set x = Nothing
 End Sub

CreateObject Versus GetObject Functions

CreateObject and GetObject are two Visual Basic functions that you
can use to return an OLE Automation object. The CreateObject function
creates an OLE Automation object; the GetObject function retrieves an
OLE Automation object from a file. The way an application behaves
when you start it with one of these functions depends on the
application. For example, when you use the CreateObject function to
access a Microsoft Excel Application object, an invisible instance of
Microsoft Excel runs. When you use the CreateObject function to
access a Microsoft Word WordBasic object, a visible instance of
Microsoft Word runs.

Use the following list to determine the behavior of Microsoft Excel
when you use the CreateObject or GetObject function:

Function Behavior

CreateObject("Excel.Application") Always loads a new invisible instance

GetObject("", "Excel.Application") Always loads a new visible instance

GetObject(, "Excel.Application") Either returns an already running
 instance, or fails with error message
 "OLE Automation server cannot create
 object"

Microsoft Word for Windows

When you use the CreateObject function to access a Microsoft Word for
Windows WordBasic object, a new visible instance runs if Word for
Windows is not currently running. If you set the variable returned by
the CreateObject function equal to nothing in this case, Word for
Windows is closed. Otherwise, if Word for Windows is already running,
the CreateObject function uses the running instance. If you set the
variable returned by the CreateObject function equal to nothing in
this case, Word for Windows is not closed, because the instance was
running before you ran the procedure.

The following Visual Basic procedure uses the CreateObject function
to access the Word for Windows WordBasic object, performs some Word
commands, and then sets the OLE Automation object variable equal to
Nothing.

 Sub Run_Word ()
 ' Dimension variable word as Object type

 Dim word As Object
 ' Set word equal to Word for Windows object
 ' Start Word for Windows if not already running
 Set word = CreateObject("Word.Basic")
 ' Create new file
 word.FileNew
 ' Insert text in new file
 word.Insert "Some Text"
 ' Save file as TEXT.DOC
 word.FileSaveAs "text"
 ' Quit Word if it was not already running before this procedure ran
 ' Set word equal to nothing to free memory used for object variable
 Set word = Nothing
 End Sub

NOTE: The above information applies both to Visual Basic version 3.0,
and Visual Basic, Applications Edition. However, because Microsoft
Excel has an object library, use the functions defined in that
library when you access Microsoft Excel objects in a Visual Basic,
Applications Edition procedure, rather than the GetObject or
CreateObject function. Because Microsoft Word for Windows does not
have an object library, you must use the CreateObject or GetObject
function to access a Microsoft Word object in any version of Visual
Basic.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide."

For more information on the GetObject function, query on the
following words in the Microsoft Knowledge Base:

 ole and automation and getobject

REFERENCES
==========

For more information about the GetObject Function and the
CreateObject Function, choose the Search button in the Visual Basic
Reference and type:

 OLE Automation

Additional reference words: 5.00 officeinterop WM_Word B_VBasic

Excel: Creating Macros for Different Language Versions
Article ID: Q111388
--
The information in this article applies to:

 - Microsoft Excel for Windows, versions 4.0, 4.0a, 5.0
 - Microsoft Excel for the Macintosh, version 4.0
--

SUMMARY
=======

In Microsoft Excel versions 4.0 and 5.0, you can determine the country code
that corresponds to the version of Microsoft Excel you are running. These
country codes can be helpful in creating custom applications.

MORE INFORMATION
================

Microsoft Excel is available in sixteen international languages. These
languages and their corresponding country codes are listed below:

 Chinese 86
 Danish 45
 Dutch 31
 English 1
 Finnish 358
 French 33
 German 49
 Greek 30
 Hebrew 972
 Italian 39
 Japanese 81
 Korean 82
 Norwegian 47
 Portuguese 351
 Spanish 34
 Swedish 46

NOTE: The following language versions are not available in Microsoft Excel
version 4.0 for the Macintosh: Chinese, Greek, Hebrew, Korean, and
Portuguese.

In a custom application it may be necessary to determine which language
version of Microsoft Excel is running. For example, if you are writing a
custom application for your company, which has offices in two different
countries, the country code would make it possible to write a single macro
for both offices. You could display different dialog boxes based on which
language version of Microsoft Excel is being used. Below are examples of
returning and using the country code in a Visual Basic macro and an XLM
macro.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

In Microsoft Excel version 5.0, the APPLICATION.INTERNATIONAL function can
be used to return information about the current country and international
settings of Microsoft Excel. The built-in constant "xlCountryCode" will
return the country code of the version of Microsoft Excel you are running.

Below is a macro example that will return the country code and will then,
based on that code, display "Hello" in the appropriate language:

Sub Code()
 Country_Code = Application.International(xlCountryCode)
 If Country_Code = 1 Then
 MsgBox ("Hello")
 ElseIf Country_Code = 34 Then
 MsgBox ("Ola")
 End If
End Sub

XLM Macro Code Example

Microsoft provides macro examples for illustration only, without warranty
either expressed or implied, including but not limited to the implied
warranties of merchantability and/or fitness for a particular purpose. This
macro is provided 'as is' and Microsoft does not guarantee that the
following code can be used in all situations. Microsoft does not support
modifications of that code to suit specific customer requirements.

In Microsoft Excel version 4.0, the Get.Workspace function can be used to
return information about the workspace. GET.WORKSPACE has one argument,
type_num. Type_Num is a number specifying the type of workspace information
you want.

To return the country code of the version of Microsoft Excel you are
running, use the type number of 37. Type 37 returns a 45-item horizontal
array of the items related to country versions and settings. You must index
this array to return a specific item. The country code is the first item in
this array.

Below is a macro example that will index the array of items returned by

GET.WORKSPACE(37) to get the country code and then, based on that code,
display "Hello" in the appropriate language:

A1: Code_Macro
A2: =INDEX(GET.WORKSPACE(37),1)
A3: =IF(A2=1)
A4: =ALERT("Hello")
A5: =ELSE.IF(A2=34)
A6: =ALERT("Ola")
A7: =END.IF()
A4: =RETURN()

REFERENCES
==========

"Function Reference," version 4.0, pages 209-212

Additional reference words: 4.00 4.00a 5.00 mpf foreign

XL5: Hiding Button Objects with Visual Basic for Applications
Article ID: Q111392
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

To print a worksheet without showing button objects, follow the appropriate
procedure below.

If the Worksheet Does Not Contain Other Graphic Objects

1. From the Edit menu, choose Go To.

2. Choose the Special button to open the Go To Special dialog box.

3. In the Go To Special dialog box, select the Objects option to select all
 objects on the worksheet. Select the OK button.

4. From the Format menu, choose Object, and select the Properties tab.

5. On the Properties tab, clear the Print Object check box. Select the OK
 button to accept the change.

NOTE: Using the Objects option in the Go To Special dialog box activates
the macros that the buttons are assigned to instead of selecting the button
object.

If the Worksheet Contains Other Graphic Objects In Addition To Buttons
--

1. From the Insert menu, choose Macro, and then choose Module.

2. In the new module, type the following Visual Basic code:

 'The following macro code hides only the macro button objects on the
 'worksheet. To re-show the buttons, use
 '
 ' ActiveSheet.Buttons.Visible = True
 '
 'instead.

 Sub HideButtons()
 ActiveSheet.Buttons.Visible = False
 End Sub

3. Return to the sheet that has the buttons and choose Macro from the Tools
 menu.

4. In the Macro dialog box, select the HideButtons macro, and choose the
 Run button.

The buttons on your worksheet will be hidden but other graphic objects will

be visible.

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

MORE INFORMATION
================

When you choose the Objects option in the Go To Special dialog box, all
objects are selected. This means that if the Print Object check box is
cleared, none of the graphic objects will be printed.

Additional reference words: 5.00 VBApp VBAEq

XL5: Determining which Items Are Selected in a List Box
Article ID: Q111564
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, you can determine which items in a multi
selection list box are selected by using the Selected property of the list
box. This article contains an example of how this can be done with a Visual
Basic subroutine.

MORE INFORMATION
================

In custom dialog boxes, multi selection list boxes allow you to choose
any number of items from a list. For example, if a list contains
Alpha, Bravo, and Charlie, you can select any, none, or all of
those items.

To determine which items are selected, you can use the Selected property of
the list box. The Selected property of a multi selection list box is an
array of values: each value is either True, if the item is selected, or
False, if the item is not selected. For example, if the list contains 1, 2,
3, and 4, and 2 and 3 are selected, the Selected property would be the
following array:

 False, True, True, False

Because the first item (1) is not selected, the second and third items (2
and 3) are selected, and the fourth item (4) is not selected.

An example of how to read the Selected array in a subroutine is shown
below.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line

continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

1. In a new workbook, insert a new worksheet (Sheet1), a dialog sheet
 (Dialog1), and a Visual Basic module (Module1).

2. In the worksheet, enter the following values:

 A1: Alpha
 A2: Bravo
 A3: Charlie
 A4: Delta
 A5: Echo
 A6: Foxtrot
 A7: Golf
 A8: Hotel

3. In the dialog sheet, add an OK button that is set to dismiss the dialog
 box.

4. In the dialog box, do the following to add a multi selection list box
 ("List1") that is linked to Sheet1!A1:A8.

 a. To create a list box in the dialog sheet, use the List Box button.

 b. Select the list box.

 c. In the name box, type "List1" (without the quotation marks) and press
 the ENTER key.

 d. From the Format menu, choose Object.

 e. Select the Control tab.

 f. In the Input Range box, type "Sheet1!A1:A8" (without the
 quotation marks).

 g. Under Selection Type, select the Multi option.

 h. Choose OK to accept the change.

 The list box is now linked to Sheet1!A1:A8 and is a multi selection
 list box.

5. In Module1, enter the following subroutine:

 '--
 Sub ShowSelectedItems()

 'Dimension some variables.
 Dim LTemp As Variant
 Dim LItem As Variant
 Dim Counter As Integer
 Dim CurList as ListBox

 'Show the dialog box.
 DialogSheets("Dialog1").Show

 'Set an object name for easy referencing of the list box.
 Set CurList = DialogSheets("Dialog1").ListBoxes("List1")

 'Put the Selected array into the variable LTemp.
 LTemp = CurList.Selected

 'Initialize the Counter variable.
 Counter = 1

 'Iterate through the loop once for each item in the array (which is
 'the same as iterating once for each item in the list box).
 For Each LItem In LTemp

 'If the value of the current item is True...
 If LItem = True Then

 '...show a message box indicating the item is selected.
 'CurList.List(Counter) gets us the value of the selected item
 '("Alpha", "Bravo", etc.).
 MsgBox CurList.List(Counter) & " is selected."

 'Otherwise...
 Else

 '...indicate that it isn't selected.
 MsgBox CurList.List(Counter) & " is NOT selected."
 End If

 'Increment the Counter so we can get the value of the next
 'selected item.
 Counter = Counter + 1
 Next 'repeat until all done
 End Sub
 '--

6. To run the subroutine, position the insertion point in the line that
 reads "Sub ShowSelectedItems()" and either press F5 or choose Start from
 the Run menu.

7. When the dialog box is displayed, select one or more items in the list
 box, and choose the OK button. A message box will be displayed for each
 item in the list, indicating whether it is selected or not.

Note that you can remove the MsgBox functions and substitute any functions
that perform a desired task using the list items. For example, you might
want to insert the current list item into a cell on a worksheet. To do
this, you could use

 Sheets("Sheet1").Cells(10, 10).Value = CurList.List(Counter)

to put the current list item into cell J10 on Sheet1.

Additional reference words: 5.00 howto multiple selection

XL5: Application.OperatingSystem Returns 3.10 in WFW 3.11
Article ID: Q111710
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel 5.0 for Windows, the OperatingSystem property of the
Application object returns the name and version number of the current
operating system. When used under Microsoft Windows for Workgroups version
3.11, OperatingSystem will return version 3.10.

MORE INFORMATION
================

Microsoft Excel 5.0 for Windows uses a "GetVersion" Windows application
programming interface (API) call that returns version 3.10 from the kernel.
The version that the kernel reports was not changed for this version of
Microsoft Windows for Workgroups.

When you run the following Visual Basic procedure, which displays the
current operating system in a dialog box, Microsoft Windows version 3.11
will be incorrectly identified as version 3.10.

 Sub ShowOS()
 Msgbox Application.OperatingSystem
 End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line-
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

REFERENCES
==========

"Visual Basic User's Guide", page 460

Additional reference words: 5.00

XL5: FOR Behaves Differently in Visual Basic Than in 4.0 Macro
Article ID: Q111725
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In the Microsoft Visual Basic Programming System, Applications Edition,
that ships with Microsoft Excel, FOR loops behave differently than they do
in the Microsoft Excel version 4.0 macro language.

The respective macro commands are as follows:

 Visual Basic, Applications Edition

 For counter = 1 To endValue.
 Next counter

 Microsoft Excel Version 4.0 Macro Commands
 --

 =FOR("counter",1,endValue)
 =NEXT()

MORE INFORMATION
================

In Visual Basic, Applications Edition, the number of iterations for the
loop cannot be changed by changing the value of the variable used to set
the ending value for the loop while the loop is in progress (this behavior
is standard for most programming languages that use FOR loops). However,
you can change the value of the variable in a Microsoft Excel version 4.0
style macro using the equivalent functions, FOR() and NEXT().

Microsoft Excel Version 4.0 Macro Example

Microsoft provides macro examples for illustration only, without
warranty either expressed or implied, including but not limited to
the implied warranties of merchantability and/or fitness for a
particular purpose. This macro is provided 'as is' and Microsoft does
not guarantee that the following code can be used in all situations.
Microsoft does not support modifications of the code to suit customer
requirements.

In the following Excel 4.0 style macro, the loop is originally set to run
ten times. However, it will only run 5 times because the ending value is
modified during the loop. To test this behavior, enter the following on a
Microsoft Excel 4.0 macro sheet:

 A1: y=10
 A2: =FOR("x",1,y)
 A3: y=5
 A4: =NEXT()
 A5: =ALERT(x)
 A6: =RETURN()

To run the macro, select cell A1 and choose Macro from the Tools menu,
then choose the Run button.

The ALERT() statement in A5 will display the value 6, which means that the
loop only ran 5 times, as opposed to the 10 times that the original value
of "y" was set for.

Visual Basic Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line-
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

In the following Visual Basic, Applications Edition, macro, the loop is
originally set to run 10 times and it will run 10 times, even though the
macro changes the value of the variable that is used to set the ending
value of the loop.

To test this macro:

1. Enter the following in a new Visual Basic module:

 Sub MyLoop()
 Dim x,y As Integer

 y=10
 For x = 1 To y
 y=5
 Next x
 MsgBox x
 End Sub

2. Position the insertion point in the line that reads "Sub MyLoop()" and
 either press F5 or choose Start from the Run menu.

The MsgBox statement in the above macro displays the value 11, which means
the loop ran through 10 times, even though we changed the value of the
variable used to set the ending value of the loop.

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, pages 143-147

For more information about FOR, choose Contents from the Help menu, select
Programming With Visual Basic, and then choose the Search button in Help
and type the following:

 For

Additional reference words: 5.00

XL5 Err Msg: "Not Enough Stack Space to Run Macro"
Article ID: Q111867
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel, when you choose a control in a dialog box that is
assigned to an event macro when there are a total of three dialog
boxes on the screen that have not been dismissed, you may receive the
following error message:

 Not Enough Stack Space to Run Macro

WORKAROUND
==========

To avoid receiving this error message when you call nested dialog boxes, do
not assign a dialog control (such as a button or a check box) to a macro
event that calls another dialog box. Instead, assign the control to first
dismiss the active dialog box, then call the desired dialog box from the
same the macro that called the first dialog box. To dismiss the active
dialog box, do any of the following:

 - Format the control with the Dismiss property:

 1. Select the control and choose Object from Format menu.

 2. In the Format Object dialog box, select the Dismiss check box on the
 Control tab .

 -or-

 - Assign the control to a macro that contains the following command:

 ActiveDialog.Hide

 -or-

 - Format the control with the Cancel property:

 1. Select the control and choose Object from Format menu.

 2. In the Format Object dialog box, Select the Cancel check box on the
 Control tab.

MORE INFORMATION
================

A dialog box is not updated until after the event macro has finished. The
event macro is the code that is run when an action, such as choosing a

button, is taken in the dialog box. Because the dialog box is not updated,
if you call a dialog from another dialog, the first dialog is still loaded
(stacked) and is not released until the code that it ran (calling the
second dialog) has completed. This condition exists even if the property of
the button that called the second dialog is set to dismiss.

In Microsoft Excel 5.0, you can stack dialog boxes (that is, display more
than one dialog box on the screen at one time) with the top dialog
box active. You can stack two dialog boxes, and still run code
assigned to controls on the second dialog box. For example, you can
call Dialog Two from Dialog One, and then run a macro assigned to a
control on Dialog Two by choosing the control. In addition, you can
call Dialog Three from Dialog Two, but you cannot run any event
macros from this top level (Dialog Three) dialog box.

Note that you cannot hide a dialog box until the macro that hides the
dialog box ends.

Visual Basic Example

In the following example, there are three dialog boxes. Each dialog
box can call either of the other two dialog boxes. Each button is
assigned to a macro that sets the value of a variable. The value of
the variable determines which dialog box to display next.

1. Create three dialog sheets. Modify each dialog sheet to contain the
 following:

 Dialog Sheet
 Buttons Dialog1 Dialog2 Dialog3
 --

 OK yes yes yes
 Cancel yes yes yes
 Go_To_Dialog1 no yes yes
 Go_To_Dialog2 yes no yes
 Go_To_Dialog3 yes yes no

2. Set the dismiss property for each button by doing the following:

 a. Select the button on the dialog sheet.

 b. From the Format menu, choose Object. Select the Control tab, and
 select the Dismiss check box. Choose OK.

3. In a new module in the same workbook, type the following:

 ' Define the variable as Integer type
 Dim dialog_number As Integer

 Sub Main()
 dialog_number = 1 'initialize the variable
 DialogSheets("Dialog1").Show 'display the first dialog sheet
 While dialog_number > 0 'while variable is greater than 0
 Select Case dialog_number 'display a dialog based on the
 'value of dialog_number

 Case 1
 'dialog_number is 1
 DialogSheets("Dialog1").Show 'display dialog1
 Case 2
 'dialog_number is 2
 DialogSheets("Dialog2").Show 'display dialog2
 Case 3
 'dialog_number is 3
 DialogSheets("Dialog3").Show 'display dialog3

 End Select
 Wend
 End Sub

'The following code sets the value of the dialog_number variable

Sub Go_To_Dialog1()
 dialog_number = 1
End Sub

Sub Go_To_Dialog2()
 dialog_number = 2
End Sub

Sub Go_To_Dialog3()
 dialog_number = 3
End Sub

Sub OK_Or_Cancel()
 dialog_number = 0
End Sub

4. Select the Dialog1 sheet tab. Select the Go_To_Dialog2 button, and
 choose Assign Macro from the Tools menu. From the Macro Name/Reference
 list, select Go_To_Dialog2() and choose OK.

5. Repeat step 4 for each button, assigning the corresponding macro to each
 button on each dialog sheet. Assign the OK_Or_Cancel macro to each OK
 and Cancel button.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide."

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, page 219-239

Additional reference words: 5.00 5.0

XL5: Controls in Dialog Box May "Snap" to Preset Values
Article ID: Q111899
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SYMPTOM
=======

In Microsoft Excel version 5.0, when you use Visual Basic commands to
adjust the dimensions of controls in custom dialog boxes by manipulating
the Top, Left, Height, and Width properties of the controls, the controls
will always "snap" to certain numbers. For example, if you change the Left
property of a control, it will always snap to a multiple of 0.75.

CAUSE
=====

This behavior occurs because of the design of the custom dialog box system.

MORE INFORMATION
================

"Snapping" occurs when a control is placed in a certain position that is
not precisely supported in a custom dialog box. For example, the Left
property of a control always snaps to the next lowest multiple of 0.75. If
you change the Left property of a control to any of the following values,
the Left property will then snap to the indicated value:

 When <Control>.Left It snaps
 is set to this value to this value
 --

 0 0
 0.25 0
 0.50 0
 0.75 0.75
 1.00 0.75
 1.25 0.75
 1.50 1.50

If you try to set the Left property of a control to 1.12 or 1.25, for
example, Microsoft Excel will snap the control's Left property to
0.75, because that is the greatest multiple of 0.75 less than or equal
to 1.12 or 1.25.

In addition, if one property is changed by snapping, it may affect other
related properties. For example, in the Visual Basic code example
below, an edit box is initially created with a Top value of 50 and a
Height value of 15. The Top value initially snaps to 49.5; however,
when the Height value snaps, the Top value is changed to 47.25, even
though 49.5 is a valid Top value. The Left and Width values are
similarly related. The final Top, Left, Height, and Width values will

always be valid, but you may observe controls moving slightly because
of snapping.

Listed here are the guidelines that Microsoft Excel uses when
determining how a property of a control will be snapped.

 Control Type Units Snapped to

 ALL CONTROLS The Left property of all controls snaps to the
 nearest multiple of 0.75 less than or equal to the
 indicated value.

 The Top property of all controls snaps to the
 nearest multiple of 0.75 less than or equal to the
 indicated value.

 Edit Boxes The Height property of edit boxes and labels use
 and Labels the following table to determine the true Height
 value:

 Height Set to Height Snaps to

 0.00 - 18.50 13.50
 18.75 - 28.25 23.25
 28.50 - 38.00 33.00
 38.25 - 47.75 42.75

 For subsequent ranges, add 9.75 for each range.

 The Width property of edit boxes and labels snaps to
 the nearest multiple of 0.75 less than or equal to
 the indicated value.

 Buttons The Height property of buttons snaps to the nearest
 multiple of 0.75 less than or equal to the indicated
 value, but no less than 15.75.

 The Width property of buttons snaps to the nearest
 multiple of 0.75 less than or equal to the indicated
 value, but no less than 3.00.

 Dialog Box Frame All properties of a dialog frame snap to the nearest
 multiple of 0.75 less than or equal to the indicated
 value.

 Group Boxes The Height property of group boxes snaps to the
 nearest multiple of .75 less than or equal to the
 indicated value, but no less than 18.75.

 The Width property of group boxes snaps to the
 nearest multiple of 0.75 less than or equal to the
 indicated value, but no less than 23.25.

 Check Boxes The Height property of check boxes is always 16.50.

 The Width property of check boxes snaps to the
 nearest multiple of 0.75 less than or equal to the

 indicated value, but no less than 23.25.

 Option Buttons The Height property of option buttons is always
 16.50.

 The Width property of option buttons snaps to the
 nearest multiple of 0.75 less than or equal to the
 indicated value, but no less than 23.25.

 List Boxes The Height property of list boxes uses the following
 table to determine the true Height value:

 Height Set to Height Snaps to

 0.00 - 26.75 21.75
 27.00 - 36.50 31.50
 36.75 - 46.25 41.25
 46.50 - 56.00 51.00

 For subsequent ranges, add 9.75 for each range.

 The Width property of list boxes snaps to the
 nearest multiple of 0.75 less than or equal to the
 indicated value, but no less than 12.00.

 Drop-Down Lists The Height property of drop-down lists is always
 15.00.

 The Width property of drop-down lists snaps to the
 nearest multiple of 0.75 less than or equal to the
 indicated value, but no less than 12.00.

 Drop-Down Edit The Height property of drop-down edit boxes is always
 Boxes 13.50.

 The Width property of drop-down edit boxes snaps to
 the nearest multiple of 0.75 less than or equal to
 the indicated value, but no less than 12.00.

 Scroll Bars The Height property of scroll bars snaps to the
 nearest multiple of 0.75 less than or equal to the
 indicated value, but no less than 12.00.

 The Width property of scroll bars is always 12.00.

 Spinners The Height property of spinners snaps to the nearest
 multiple of 0.75 less than or equal to the indicated
 value, but no less than 13.50.

 The Width property of spinners is always 9.00.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a

particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line-
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

The following subroutine creates a new dialog sheet, adds an edit box
to it, changes the Top, Left, Height, and Width properties of the
edit box, and then displays what the various properties have snapped
to.

'--
Sub ControlSnapDemo()
 'Add a new dialog sheet to the active workbook.
 Set DemoDlg = ThisWorkbook.DialogSheets.Add
 'Add an edit box to the current dialog sheet. The dimensions
 'supplied are arbitrary.
 Set EdBox = DemoDlg.EditBoxes.Add(50, 50, 50, 50)
 'Set the Top, Left, Height, and Width properties of the edit box.
 EdBox.Top = 50
 EdBox.Left = 70
 EdBox.Height = 15
 EdBox.Width = 80
 'Construct a message string which will be shown in a message box.
 'Chr$(9) is a tab character: Chr$(10) is a line feed.
 MsgString = Chr$(9) & "Original Setting" & Chr$(9) & "Snaps To"
 MsgString = MsgString & Chr$(10) & "Top" & Chr$(9) & "50" & Chr$(9)
 MsgString = MsgString & Chr$(9) & EdBox.Top & Chr$(10) & "Left"
 MsgString = MsgString & Chr$(9) & "70" & Chr$(9) & Chr$(9)
 MsgString = MsgString & EdBox.Left & Chr$(10)& "Height" & Chr$(9)
 MsgString = MsgString & "15" & Chr$(9) & Chr$(9) & EdBox.Height
 MsgString = MsgString & Chr$(10) & "Width" & Chr$(9) & "80" & Chr$(9)
 MsgString = MsgString & Chr$(9) & EdBox.Width
 'Show the message.
 MsgBox MsgString
End Sub
'--

When you run this subroutine, a new dialog sheet containing a new
edit box will be created. A message box will appear with this
message:

 Original Setting Snaps To
 Top 50 47.25
 Left 70 69.75
 Height 15 13.5
 Width 80 79.5

The properties of the edit box have snapped to values appropriate for

an edit box. Note that the Top property has been "over-snapped"
because of the substantial change in the Height property.

Additional reference words: 5.00

XL5: Can't Use Replace Command to Search for Blank Cells
Article ID: Q111942
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel, if you choose Replace from the Edit menu, and you leave
the Find What box blank and choose Find Next, Replace, or Replace All to
fill blank cells on a worksheet, you receive the following error message:

 Search string must be specified

WORKAROUND 1
============

The following workaround is presented on page 33 in "Microsoft Excel
Visual Basic for Applications Step by Step," a Microsoft Press book.

 1. Highlight the range
 2. From the Edit menu, choose Goto
 3. Choose Special
 4. Select the Blanks check box
 5. Choose OK

All the blanks in the range are now highlighted. Enter the value that
you want to replace the blanks with. Now press CTRL+ENTER. This places
the data in all of the selected cells.

WORKAROUND 2
============

The following Visual Basic procedure prompts you for the text you want to
enter in blank cells, and replaces the contents of the blank cells in the
selection with this text.

 Sub Replace_Blanks()
 ' Dimension variables
 Dim Blanks As Object
 Dim ReplaceWith As String
 Dim Cell As Object
 ' Prompt user for string to enter in blank cells
 ReplaceWith = _
 Application.InputBox("Replace blank cells with what?", _
 "Replace String")
 ' Select blank cells in selection
 Selection.SpecialCells(xlBlanks).Select
 ' Defined Blanks as selection
 Set Blanks = Application.Selection
 ' Fill each cell in selection with user input
 For Each cell In blanks

 Cell.Activate
 ActiveCell.Formula = replacewith
 Next cell
 End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

MORE INFORMATION
================

In Microsoft Excel versions earlier than version 5.0, you can replace blank
cells with a value by using the Replace dialog box and leaving the Find
What box blank. However, in Microsoft Excel version 5.0, you cannot use
this method to replace blank cells because you cannot leave the Find What
box in the Replace dialog box blank.

REFERENCES
==========

"Microsoft Excel Visual Basic for Applications Step by Step,"
Reed Jacobson, $29.95 ($39.95 Canada), ISBN is 1-55615-589-1

Additional reference words: 5.00 err msg

Selection.Cells with Nonadjacent Selection Returns Single Cell
Article ID: Q112028
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel, when you use the Range method or the Selection
property with the cells method in a Visual Basic module to return a
nonadjacent selection of cells on a worksheet, only the first cell in
the selection is returned.

STATUS
======

Microsoft has confirmed this to be a problem in the versions of Microsoft
Excel listed above. We are researching this problem, and will post new
information here in the Microsoft Knowledge Base when it becomes available.

WORKAROUND
==========

You can use the following sample Visual Basic procedure to return all the
cells in a selection when not all of the cells are adjacent on a worksheet:

 Sub Apply_Italic()
 ' Declare variables
 Dim x As Object
 Dim y As Object
 ' Define y as an area in the selection
 For Each y In Selection.Areas
 ' Define x as a cell in that area
 For Each x In y
 ' Replace the following statement with the code you want to use
 ' with the cells in the selection
 x.Font.Italic = True
 Next x
 Next y
 End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one

logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

MORE INFORMATION
================

Normally, you can use the Range method or the Selection property with
the Cells method to return selected cells. However, if the cells in
the selection are nonadjacent, the Range method and the Selection
property return only the first cell in the selection.

Visual Basic Example

When you run the following Visual Basic procedure, the data in each
adjacent cell in the selection appears in italic formatting:

 Sub Apply_Italic()
 ' Define variable x
 Dim x as Object
 ' Define x as a cell in the selection
 For Each x in Selection.Cells
 ' Format the contents of each cell with Italic formatting
 x.Font.Italic=True
 Next x
 End Sub

If the selection of cells is nonadjacent, only the data in the first
selected cell appears in italic formatting.

NOTE: To select nonadjacent cells on a worksheet, select one cell, hold
down the CTRL key, and select another cell. Repeat this procedure until you
select every cell in the selection that you want.

REFERENCES
==========

For more information about the Range Method, choose the Search button
in the Visual Basic Reference and type:

 Range Method

For more information about the Selection Property, choose the Search
button in the Visual Basic Reference and type:

 Selection Property

Additional reference words: 5.00

XL5: Cannot Print Multiple Copies to DeskJet 500C/550C Driver
Article ID: Q112037
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

If you are using a Hewlett-Packard (HP) DeskJet 550C or 500C printer driver
version 3.0 or 3.1, you will not be able to print multiple copies from
Microsoft Excel 5.0. Changing the number of copies in the Print dialog box
will not affect the number of copies printed.

STATUS
======

Microsoft has confirmed this to be a problem in the versions of Microsoft
Excel listed above. We are researching this problem and will post new
information here in the Microsoft Knowledge Base as it becomes available.

WORKAROUND 1
============

The HP DeskJet 500 (black and white) driver version 2.14 that ships with
Microsoft Windows 3.1 and 3.11 will print multiple copies correctly.
However, this driver does not allow you to print in color.

WORKAROUND 2
============

The following Visual Basic for Applications code allows you to print
multiple copies.

'A procedure to print multiple copies
Sub Example()
 Ncopies = Application.InputBox("Please enter number off copies _
 to print: ", "Print Multiple Copies", 1, , , , , 1)
 For counter = 1 To Ncopies
 ActiveWindow.SelectedSheets.PrintOut Copies:=1
 Next
End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from

one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

Additional reference words: 5.00 VBAppCode

XL5: "Cannot Find Macro..." Using Run Method with Add-In Macro
Article ID: Q112219
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In a Visual Basic module in Microsoft Excel, if you use the Run method of
the Application object to run a macro located in an add-in, you may receive
the following error message

 Run-time error '1004':

 Cannot find macro '<ADDIN.XLA>!<Addin_Macro>'

where <ADDIN.XLA> is the name of the add-in that contains the macro,
and <Addin_Macro> is the name of the macro that you want to run.

CAUSE
=====

This error occurs when the add-in that contains the procedure you
used with the Run method is not currently open. Even if the add-in is
fast loaded by the following line in the EXCEL5.INI file

 OPEN=/f C:\EXCEL\ADDIN.XLA

where ADDIN.XLA is the add-in file.

STATUS
======

Microsoft has confirmed this to be a problem in the Microsoft
products listed at the beginning of this article. We are researching
this problem and will post new information here in the Microsoft
Knowledge Base as it becomes available.

WORKAROUND
==========

To use the Run method to run a macro that is contained in an add-in
without receiving the error message above, do any of the following:

 - In the procedure that contains the Run method, use the Open method of
 the Workbooks object to open the add-in before the Run method as in the
 following example:

 Workbooks.Open "c:\EXCEL\ADDIN.XLA"
 Run("ADDIN.XLA!Macro_Name")

 -or-

 - Do the following to manually establish a reference to the add-in from
 the procedure that is calling the add-in macro:

 1. Activate the module that contains the procedure that is running the
 add-in macro.

 2. From the Tools menu, choose References.

 3. If the add-in that contains the macro you want to run is not listed
 under Available References, choose Browse.

 4. From the File Name list, select the add-in you want to reference and
 choose OK. Choose OK again.

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line-
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

MORE INFORMATION
================

When you fast load and add-in, for example by using the /f switch in
the EXCEL5.INI file as explained above, any menus and toolbars
contained in the add-in are available, but the add-in file itself is
not actually loaded, and any macros contained in the add-in are not
loaded. When you demand load an add-in, either by opening the add-in
file, or with the following line in the EXCEL5.INI file

 OPEN C:\EXCEL5\ADDIN.XLA

everything in the add-in is available, including any macros in the
add-in. Therefore, when you demand load and add-in, you do not
receive the above error message when you use the Run method to run a
macro located in the add-in.

For more information about using the /F switch to load an Add-in,
query on the following words in the Microsoft Knowledge Base:

 fast and load and add-in

Additional reference words: 5.00 addins addin

XL5: 'For Each Item in List' Doesn't Work
Article ID: Q112330
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0 for Windows, the Visual Basic 'For
Each...Next' control structure may not function properly if the group
argument is a list in a custom dialog box.

MORE INFORMATION
================

In Microsoft Excel version 5.0, you can use the 'For Each...Next'
control structure to repeat a group of statements for each element in
an array or collection.

For example, the following code displays dialog boxes containing the
contents of each cell in a selected range:

 For Each mCell In Selection '"Selection" is the group argument
 MsgBox mCell.Value
 Next

If the group argument is a list in a custom dialog box, the For Each
command may fail, and you will receive the following error message:

 Run-time error '10':
 Duplicate definition

WORKAROUND
==========

To avoid this error, set an object equal to the list

 <Object> = <Listname>.List

and then use the object in the For Each statement. For example, instead of

 xList = DialogSheets("Dialog1").ListBoxes("List1")
 For Each mItem in xList.List
 <statements>
 Next

use

 xList = DialogSheets("Dialog1").ListBoxes("List1")
 mTemp = xList.List
 For Each mItem in mTemp
 <statements>

 Next

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

This example shows one way that you can avoid the error associated with
calling a list directly from a For Each statement.

The following example assumes you have a workbook that contains a
Visual Basic module (Module1) and a dialog sheet (Dialog1). The
dialog sheet contains a single list box (List1).

In Module1, enter the following subroutine:

'--
Option Explicit

Sub ForEachListItem()

 'Dimension some variables.
 Dim Alpha As Variant, Foxtrot As Variant, Golf As Variant

 'Set an object name for easy referencing of the list box.
 Set Alpha = DialogSheets("Dialog1").ListBoxes("List1")

 'Add three items to the list.
 Alpha.AddItem "Bravo"
 Alpha.AddItem "Charlie"
 Alpha.AddItem "Delta"

 'Set an object name so that the For Each structure can function
 'properly.
 Golf = Alpha.List

 'Iterate through the loop once for each item in Golf (which is
 'the same as iterating once for each item in the list box).
 For Each Foxtrot In Golf

 'Show the current list item in a message box.

 MsgBox Foxtrot
 Next 'repeat until all done
End Sub
'--

To run the subroutine, position the cursor in the line that reads
"Sub ForEachListItem()," and either press F5 or choose Start from the Run
menu.

If the For Each line is entered as shown, the subroutine will run
properly and message boxes will display the names of the items in the
list.

If the For Each line is altered to refer to Alpha.List directly,
without using an intermediary function (in this case, Golf), you will
receive the error message shown above and the message boxes will not
be displayed.

Additional reference words: 5.00

XL5: Getting Windows Status Information from Windows API
Article ID: Q112393
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

The Visual Basic, Applications Edition, example below demonstrates how
to obtain system status information similar to the information
displayed in the Microsoft Windows Program Manager About box. The
example procedure displays the following information using the Windows
API functions indicated:

This Statement/
Property Displays This Information
--

GetWinFlags The kind of CPU (80286, 80386, or 80486) and
 whether a math coprocessor is present

GetWinFlags Whether Microsoft Windows is running in
 enhanced mode or standard mode

GetFreeSpace The amount of free memory
and
GlobalCompact

SystemHeapInfo The percentage of free system resources

OperatingSystem The version of Windows

MORE INFORMATION
================

To Create a sample macro

1. Start Microsoft Excel for Windows 5.0.

2. From the Insert menu, choose Macro, and then choose Module. Module 1
 is created by default.

3. Enter the following code into the newly created module:

 ' Constants for GetWinFlags.
 Global Const WF_CPU286 = &h2
 Global Const WF_CPU386 = &h4
 Global Const WF_CPU486 = &h8
 Global Const WF_80x87 = &h400
 Global Const WF_STANDARD = &h10
 Global Const WF_ENHANCED = &h20

 ' Type for SystemHeapInfo.
 Type SYSHEAPINFO
 dwSize As Long
 wUserFreePercent As Integer
 wGDIFreePercent As Integer
 hUserSegment As Integer
 hGDISegment As Integer
 End Type

 Declare Function GetWinFlags Lib "KERNEL" () As Long
 Declare Function GetFreeSpace Lib "KERNEL" _
 (ByVal wFlags As Integer) As Long
 Declare Function GlobalCompact Lib "KERNEL" _
 (ByVal dwMinFree As Long) As Long
 Declare Function SystemHeapInfo Lib "TOOLHELP.DLL" _
 (shi As SYSHEAPINFO) As Integer

 Sub GetWindowsInfo()
 Dim Status As Long
 Dim Memory As Long
 Dim msg As String ' Status information.
 Dim nl As String ' New-line.
 Dim shi As SYSHEAPINFO
 nl = Chr$(13) + Chr$(10) ' New-line.

 Status = GetWinFlags()

 ' Get operating system version.
 ' (Uses Excel's built-in OperatingSystem function rather
 ' than Windows API calls.)
 msg = "OS: " + Application.OperatingSystem

 ' Get CPU kind and operating mode.
 msg = msg + nl + "CPU: "
 If Status And WF_CPU286 Then msg = msg + "80286"
 If Status And WF_CPU386 Then msg = msg + "80386"
 If Status And WF_CPU486 Then msg = msg + "80486"
 If Status And WF_80x87 Then msg = msg + " with 80x87"
 msg = msg + nl
 msg = msg + "Mode: "
 If Status And WF_STANDARD Then msg = msg + "Standard" + nl
 If Status And WF_ENHANCED Then msg = msg + "Enhanced" + nl

 ' Get free memory.
 Memory = GetFreeSpace(0)
 msg = msg + "Memory free: "
 msg = msg + Format$(Memory \ 1024, "###,###,###") + "K" + nl
 Memory = GlobalCompact(&hffff)
 msg = msg + "Largest free block: "
 msg = msg + Format$(Memory \ 1024, "###,###,###") + "K" + nl

 ' Get free system resources.
 msg = msg + "System resources: "
 shi.dwSize = Len(shi)
 If SystemHeapInfo(shi) Then
 If shi.wUserFreePercent < shi.wGDIFreePercent Then

 msg = msg + Format$(shi.wUserFreePercent) + "%"
 Else
 msg = msg + Format$(shi.wGDIFreePercent) + "%"
 End If
 End If

 MsgBox msg, vbOKOnly, "About This PC"
 End Sub

4. From the Tools menu, choose Macro.

5. From the Macro Name/Reference list, select GetWindowsInfo, and
 choose OK to run the macro.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Additional reference words: 5.00 vbappcode

XL5: Using the Windows OpenFile Dialog Box
Article ID: Q112394
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

This article describes how to access the OpenFile dialog box using a Visual
Basic, Applications Edition, procedure. The OpenFile dialog box can be used
to prompt the user for the name of a file.

This article assumes that you are familiar with Visual Basic, Applications
Edition, and with the programming tools provided with Microsoft Excel
version 5.0.

MORE INFORMATION
================

In Microsoft Excel version 5.0, you can access the OpenFile common dialog
box by using Windows GetOpenFileName() application programming interface
(API) function. This function creates a system-defined dialog box, familiar
throughout Windows, that makes it possible for the user to select a file to
open. This function will return a valid file name to the programmer that is
fully qualified with the path name. Using this function will simplify
programming issues for the developer.

A developer can customize the way the system will handle specific
situations, such as specifying that the file must exist when the user wants
to save a file, through the use of flags. Additionally, multiple files can
be selected and returned using this function (which is not true of the
built-in function Application.GetOpenFilename, which will only return a
single file name).

The OpenFile common dialog routines are stored in a file called
COMMDLG.DLL, which is supplied with Microsoft Windows versions 3.1 and
later.

Visual Basic Procedure

To use the code below, paste the function and declarations into a
Visual Basic module.

You may have some Windows API functions defined in an existing Microsoft
Excel module; therefore, your declarations may be duplicates. If you
receive a duplicate procedure name error, remove the Declare statement from
your code or comment it out.

'---
' Global Declaration Section

'---
Option Explicit

Type tagOPENFILENAME
 lStructSize As Long
 hwndOwner As Integer
 hInstance As Integer
 lpstrFilter As Long
 lpstrCustomFilter As Long
 nMaxCustFilter As Long
 nFilterIndex As Long
 lpstrFile As Long
 nMaxFile As Long
 lpstrFileTitle As Long
 nMaxFileTitle As Long
 lpstrInitialDir As Long
 lpstrTitle As Long
 Flags As Long
 nFileOffset As Integer
 nFileExtension As Integer
 lpstrDefExt As Long
 lCustData As Long
 lpfnHook As Long
 lpTemplateName As Long
End Type

Declare Function GetOpenFileName% Lib "COMMDLG.DLL" (OPENFILENAME As
tagOPENFILENAME)
Declare Function lstrcpy& Lib "KERNEL" (ByVal lpDestString As Any,
ByVal lpSourceString As Any)
Declare Function GetModuleHandle Lib "KERNEL" (ByVal App As String) As
Integer

Dim OPENFILENAME As tagOPENFILENAME

Global Const OFN_READONLY = &h1
Global Const OFN_OVERWRITEPROMPT = &h2
Global Const OFN_HIDEREADONLY = &h4
Global Const OFN_NOCHANGEDIR = &h8
Global Const OFN_SHOWHELP = &h10
Global Const OFN_ENABLEHOOK = &h20
Global Const OFN_ENABLETEMPLATE = &h40
Global Const OFN_ENABLETEMPLATEHANDLE = &h80
Global Const OFN_NOVALIDATE = &h100
Global Const OFN_ALLOWMULTISELECT = &h200
Global Const OFN_EXTENSIONDIFFERENT = &h400
Global Const OFN_PATHMUSTEXIST = &h800
Global Const OFN_FILEMUSTEXIST = &h1000
Global Const OFN_CREATEPROMPT = &h2000
Global Const OFN_SHAREAWARE = &h4000
Global Const OFN_NOREADONLYRETURN = &h8000
Global Const OFN_NOTESTFILECREATE = &h10000

Global Const OFN_SHAREFALLTHROUGH = 2
Global Const OFN_SHARENOWARN = 1
Global Const OFN_SHAREWARN = 0

'---
' Open Common Dialog Function
'---
Function OpenCommDlg()
 Dim Message$, Filter$, FileName$, FileTitle$, DefExt$
 Dim Title$, szCurDir$, APIResults%

 ' Define the filter string and allocate space in the "c" string
 Filter$ = "Excel Files(*.XL*)" & Chr$(0) & "*.XL*" & Chr$(0)
 Filter$ = Filter$ & "Text(*.txt)" & Chr$(0) & "*.TXT" & Chr$(0)
 Filter$ = Filter$ & Chr$(0)

 ' Allocate string space for the returned strings.
 FileName$ = Chr$(0) & Space$(255) & Chr$(0)
 FileTitle$ = Space$(255) & Chr$(0)

 ' Give the dialog a caption title.
 Title$ = "My File Open Dialog" & Chr$(0)

 ' If the user does not specify an extension, append TXT.
 DefExt$ = "TXT" & Chr$(0)

 ' Set up the defualt directory
 szCurDir$ = CurDir$() & Chr$(0)

 ' Set up the data structure before you call the GetOpenFileName

 OPENFILENAME.lStructSize = Len(OPENFILENAME)
 OPENFILENAME.hwndOwner = GetModuleHandle(Application)
 OPENFILENAME.lpstrFilter = lstrcpy(Filter$, Filter$)
 OPENFILENAME.nFilterIndex = 1
 OPENFILENAME.lpstrFile = lstrcpy(FileName$, FileName$)
 OPENFILENAME.nMaxFile = Len(FileName$)
 OPENFILENAME.lpstrFileTitle = lstrcpy(FileTitle$, FileTitle$)
 OPENFILENAME.nMaxFileTitle = Len(FileTitle$)
 OPENFILENAME.lpstrTitle = lstrcpy(Title$, Title$)
 OPENFILENAME.Flags = OFN_FILEMUSTEXIST Or OFN_READONLY
 OPENFILENAME.lpstrDefExt = lstrcpy(DefExt$, DefExt$)
 OPENFILENAME.hInstance = 0
 OPENFILENAME.lpstrCustomFilter = 0
 OPENFILENAME.nMaxCustFilter = 0
 OPENFILENAME.lpstrInitialDir = lstrcpy(szCurDir$, szCurDir$)
 OPENFILENAME.nFileOffset = 0
 OPENFILENAME.nFileExtension = 0
 OPENFILENAME.lCustData = 0
 OPENFILENAME.lpfnHook = 0
 OPENFILENAME.lpTemplateName = 0

 ' This will pass the desired data structure to the Windows API,
 ' which will in turn use it to display the Open Dialog form.

 APIResults% = GetOpenFileName(OPENFILENAME)

 If APIResults% <> 0 Then

 ' Note that FileName$ will have an embedded Chr$(0) at the
 ' end. You may want to strip this character from the string.

 Message$ = "The file you chose was " + RTrim$(FileName$)
 Else
 Message$ = "No file was selected"
 End If

 MsgBox Message$

 ' Return the file selected
 OpenCommDlg = RTrim$(FileName$)

End Function

This function can be called as shown in the example below.

Sub OpenCommDlgTest()
 Dim FileSelected
 Calls the OpenCommDlg function (listed above) and places
 return value in FileSelected variable
 FileSelected = OpenCommDlg
 MsgBox FileSelected
End Sub

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

REFERENCES
==========

"Microsoft Windows Software Development Kit Programmer's Reference,"
Volume 2: Functions, version 3.1

Additional reference words: 5.00 COMMDLG.DLL linked listbox vbappcode
list box

XL5: Incorrect Use of "Is" Function Causes GP Fault
Article ID: Q112629
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0 for Windows, if you use the Is function
incorrectly, you may receive a general protection (GP) fault.

MORE INFORMATION
================

The Is function is used to compare two object reference variables. The
result of an Is operation is either TRUE (if the variables both refer to
the same object) or FALSE (if they do not).

For example, if you have the following code:

 Set Alpha = ActiveWorkbook.Sheets(1)
 Set Bravo = ActiveWorkbook.Sheets(1)

 Set Charlie = Alpha
 Set Delta = Alpha

All of these commands will return the value TRUE:

 Alpha Is Charlie
 Alpha Is Delta
 Charlie Is Delta

Note that Bravo Is <object>, where <object> is Alpha, Charlie, or Delta,
will return FALSE, because the value of Bravo is not the same as the value
of Alpha, Charlie, or Delta, even though they both refer to the same
object.

If you use the Is function to compare a valid object reference (for
example, Alpha) to an invalid object reference (for example, a numeric
value, a string, or any other item that is not an object), you may receive
a GP fault.

To prevent this error from occurring, make sure both items being compared
are valid objects.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and

Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line-
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

The following code example illustrates the proper use of the Is function.

To run this example, position the cursor in the line that reads "Sub
GoodIsSubroutine()" and either press the F5 key or choose Start from the
Run menu.

'--
Option Explicit

Sub GoodIsSubroutine()

 'Dimension variables.
 Dim Alpha As Variant, Bravo As Variant, Charlie As Variant
 Dim Delta As Variant

 'Create object names.
 Set Alpha = ActiveWorkbook.Sheets(1)
 Set Bravo = ActiveWorkbook.Sheets(1)
 Set Charlie = Alpha
 Set Delta = Alpha

 'These are tests to see if one object Is another object. A message
 'box is displayed if the objects are the same. In this case, only the
 'first three messages will be shown.
 If Alpha Is Charlie Then
 MsgBox "Alpha is Charlie!"
 End If

 If Alpha Is Delta Then
 MsgBox "Alpha is Delta!"
 End If

 If Charlie Is Delta Then
 MsgBox "Charlie is Delta!"
 End If

 If Bravo Is Charlie Then
 MsgBox "Bravo is Charlie!"
 End If

 If Bravo Is Delta Then
 MsgBox "Bravo is Delta!"
 End If

End Sub
'--

When you run GoodIsSubroutine, you will be shown three message boxes,
one for each of the Is functions that succeeds.
'--

Additional reference words: 5.00 hang stop responding gpf

XL5: OLE Automation Dialog Box Redrawn Incorrectly
Article ID: Q112630
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
=======

In Microsoft Excel version 5.0 for Windows, if you use OLE Automation to
control another application, and if you display a dialog box from that
application, the dialog box may not be correctly redrawn when you move it
on the screen.

Also, if you switch to Microsoft Excel (for example, by pressing ALT+TAB)
without dismissing the dialog box, Microsoft Excel may appear to hang. This
is by design.

CAUSES
======

Dialog Box Is Not Redrawn Correctly

This error occurs because of the way in which dialog boxes are handled in
OLE Automation. If you display a dialog box from another application,
Microsoft Excel is temporarily "frozen" until the dialog box is dismissed.
When Microsoft Excel is frozen this way, it does not have the ability to
redraw parts of the screen that are occupied by a dialog box, and you may
see "ghost" images of the dialog box that only disappear when control is
returned to Microsoft Excel. The only solution to this problem is to not
move dialog boxes that are shown by OLE Automation.

The redraw behavior used by Microsoft Excel is different than that used by
Microsoft Visual Basic for Windows, version 3.0. Visual Basic version 3.0
has the ability to redraw parts of the screen, eliminating the "ghost"
images, because of the way that Visual Basic handles dialog boxes that are
shown by OLE Automation.

Microsoft Excel Hangs When a Dialog Box Is Displayed
--

Microsoft Excel cannot be accessed when a dialog box called through OLE
Automation is still on the screen.

If you switch back to Microsoft Excel without dismissing the dialog box, an
hourglass will appear and Microsoft Excel will appear to hang. If this
occurs, you should switch to the dialog box by pressing ALT+TAB and
dismissing the dialog box before you returning to Microsoft Excel.

Additional reference words: 5.00 lock up freeze doesn't respond

XL5: Setting Status Bar Text and ToolTips for Toolbar Buttons
Article ID: Q112632
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, the behavior of status bar text attached to
toolbar buttons differs from earlier versions of Microsoft Excel. In
Microsoft Excel version 5.0, status bar text becomes attached to a toolbar
button by one of two methods. This can be achieved by using a Visual Basic
macro or from the Status Bar Text box in the Macro Options dialog box. (To
get to this dialog box, choose Macro from the Tools menu, select the name
of the macro assigned to the toolbar button, and click the Options button.)

ToolTips is a new feature in Microsoft Excel version 5.0. ToolTips can only
be assigned to a toolbar button by using a macro.

MORE INFORMATION
================

In Microsoft Excel version 5.0, the status bar text is a property of the
macro, not of the toolbar button. When a macro is assigned to a toolbar
button, that macro's status bar text is assigned to that toolbar button and
will be displayed when the mouse cursor is positioned over that toolbar
button.

NOTE: This mouse cursor behavior differs from earlier versions of Microsoft
Excel. In earlier versions you have to hold down the left mouse button
while the cursor is on top of the toolbar button in order to read the
status bar text.

In Microsoft Excel version 5.0, the status bar text will change whenever a
macro is assigned to a toolbar button. If no status bar text is assigned to
the macro, the toolbar button's status bar text will revert to the default
for that toolbar button. For example, the default text for a toolbar button
taken from the Custom category is Creates A Button To Which You Can
Assign A Macro.

ToolTips are a property of the individual toolbar button. They only change
when a Visual Basic macro explicitly sets the Name property for a
particular toolbar button.

The following Visual Basic macros add a toolbar button, set its name
property, and assign status bar text to a macro named "myMacro". Note that
it is not possible to assign status bar text directly to a toolbar button
from a Visual Basic macro.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability

and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Sub AddButton()
 'creates a new toolbar titled "My Toolbar"
 With Toolbars.Add("My Toolbar")
 'show the newly created toolbar
 .Visible = True
 'Add the "hand" button to end of the new toolbar
 .ToolbarButtons.Add Button:=229
 'Set ToolTip to "my tool tip"
 .ToolbarButtons(.ToolbarButtons.Count).Name = "my tool tip"
 End With
End Sub

After you run the above macro, clicking the hand button will cause
the Assign Macro dialog box to appear, where you can assign a macro
to this new button. Alternatively, you can assign a macro to the
toolbar button above by changing Line 4 to read:

 .ToolbarButtons.Add Button:=229, OnAction:="myMacro"

The following is the Visual Basic macro code to assign Status Bar text
to a macro:

Sub AssignStatusText()
 Application.MacroOptions Macro:="myMacro", StatusBar:="My Text"
End Sub

NOTE: For the above Subroutine to work you must create a macro named
"myMacro".

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, Chapter 12,
"Managing Toolbars and Toolbar Buttons with Visual Basic"

For more information about toolbar buttons, choose the Search button in
Help and type:

 toolbar buttons

Additional reference words: 5.00 tool tip tips

Excel AppNote: Built-in Constants in VB, Applications Edition
Article ID: Q112671
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

The Application Note "Built-in Constants in Microsoft Visual Basic
Programming System, Applications Edition," (WE0993) provides a list
of the Microsoft Excel constants and their values for use in
Microsoft Visual Basic Programming System, Applications Edition. The
enclosed WE0993 disk contains the Microsoft Excel 5.0 constants file,
XLCONST.BAS, and the Visual Basic, Applications Edition, constants
file, VBACONST.BAS. You can use these files in Visual Basic version
3.0 projects. These files provide the definitions of these constants
so you can use the name of the constants in your Visual Basic version
3.0 modules. The WE0993 disk also includes a Microsoft Excel workbook
file, XLCONST.XLS, which includes alphabetical and numerical lists of
the Microsoft Excel constants.

You can obtain this Application Note from the following sources:

 - CompuServe, GEnie, and Microsoft OnLine
 - Microsoft Download Service (MSDL)
 - The Internet (Microsoft anonymous ftp server)
 - Microsoft Product Support Services

For complete information, see the "To Obtain This Application Note"
section at the end of this article.

THE TEXT OF WE0993
==================

==
 Microsoft(R) Product Support Services Application Note (Text File)
 WE0993: BUILT-IN CONSTANTS IN MICROSOFT VISUAL BASIC
 PROGRAMMING SYSTEM, APPLICATIONS EDITION
==
 Revision Date: 3/94
 1 Disk Included

The following information applies to Microsoft Excel for Windows(TM),
version 5.0.

| INFORMATION PROVIDED IN THIS DOCUMENT AND ANY SOFTWARE THAT MAY |
| ACCOMPANY THIS DOCUMENT (collectively referred to as an Application |
| Note) IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER |
| EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED |
| WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR |
| PURPOSE. The user assumes the entire risk as to the accuracy and |
| the use of this Application Note. This Application Note may be |
| copied and distributed subject to the following conditions: 1) All |
| text must be copied without modification and all pages must be |

| included; 2) If software is included, all files on the disk(s) must |
| be copied without modification (the MS-DOS(R) utility diskcopy is |
| appropriate for this purpose); 3) All components of this |
| Application Note must be distributed together; and 4) This |
| Application Note may not be distributed for profit. |
| |
| Copyright (C) 1994 Microsoft Corporation. All Rights Reserved. |
| Microsoft, MS-DOS, and Visual Basic are registered trademarks and |
Windows is a trademark of Microsoft Corporation.

OVERVIEW
========

This Application Note provides a list of the Microsoft Excel constants
and their values for use in Microsoft Visual Basic Programming System,
Applications Edition. The enclosed WE0993 disk contains the Microsoft
Excel 5.0 constants file, XLCONST.BAS, and the Visual Basic,
Applications Edition, constants file, VBACONST.BAS. You can use these
files in Visual Basic version 3.0 projects. These files provide the
definitions of these constants so you can use the name of the
constants in your Visual Basic version 3.0 modules. The WE0993 disk
also includes a Microsoft Excel workbook file, XLCONST.XLS, which
includes alphabetical and numerical lists of the Microsoft Excel
constants.

WHAT ARE BUILT-IN CONSTANTS?
============================

When you create procedures in Microsoft Excel using the Visual Basic
Programming System, Applications Edition, you can use "constants" to
represent values that you use frequently in a procedure. Using
constants makes your code easier to read and maintain. For example, if
you use the value 5.67 frequently, you can define a constant called
<MYVALUE> as 5.67, and then you can use <MYVALUE> in your procedure
everywhere you would use the value 5.67.

Microsoft Excel has built-in constants that are used in Visual Basic
functions, methods, objects, and properties. The Microsoft Excel built-
in constants all begin with the letters "xl," and the Visual Basic,
Applications Edition, built-in constants begin with the letters "vb."

Built-in constants make it easier for you to create procedures in
Microsoft Excel using Visual Basic. For example, to change the
orientation of the active worksheet to Landscape or to check whether a
cell is center-aligned, you could use the following Visual Basic code:

 ActiveWorksheet.PageSetup.Orientation = xlLandscape
 If Range("A1").HorizontalAlignment = xlCenter Then
 MsgBox "Cell A1 is centered!"
 End If

The built-in constants (xlLandscape and xlCenter) are easier to
remember than the numeric values they represent. In addition, when you
use built-in constants, it is easier to read the code and understand
the function the code performs. Without Microsoft Excel's built-in
constants, the lines above would appear as follows:

 ActiveWorksheet.PageSetup.Orientation = 2
 If Range("A1").HorizontalAlignment = -4108 Then

Note how difficult it is to understand these lines without knowing
what the values 2 and -4108 represent.

USING MICROSOFT EXCEL BUILT-IN CONSTANTS IN VISUAL BASIC VERSION 3.0
==

In Visual Basic in Microsoft Excel, the Microsoft Excel constants and
the Visual Basic, Applications Edition, constants are available
automatically. For the Standard or Professional Editions of Visual
Basic, you must either add the constants file XLCONST.BAS or
VBACONST.BAS to your project so that you can use the constant by name,
or you must use the numeric value of the constant. The Microsoft Excel
constants file (XLCONST.BAS), and the Microsoft Visual Basic,
Applications Edition, constants file (VBACONST.BAS) include the name
of each constant along with the numeric value of that constant. These
files are available on the WE0993 disk that comes with this
Application Note.

LOADING CONSTANTS FROM XLCONST.BAS OR VBACONST.BAS
==

The XLCONST.BAS and VBACONST.BAS files contain the Microsoft Excel and
Visual Basic, Applications Edition, constants that you can use in your
code. For example, to set the orientation of a worksheet in Microsoft
Excel to landscape, you can either set the worksheet's PageSetup
Orientation property to 2, or you can use the constant xlLandscape
supplied in XLCONST.BAS. Using constants in your code makes the code
easier to read. In addition, when you are entering code, you may find
the symbolic constant easier to remember than its numerical specific.
The constants are declared globally so they must be loaded into a code
module, not into a form. To limit the scope of the constants to a form
or procedure, change Global to Const in the declaration and paste them
into the Declaration section of a form or procedure.

To load XLCONST.BAS or VBACONST.BAS into a code module
--

1. In the development environment, choose the New Module command from
 the File menu. This adds an empty code module to your project.

2. Make sure the module is the active window, and then choose Load
 Text from the File menu.

3. From the List Files Of Type box, select Basic Files (*.BAS).

4. Select one of the files containing constants, and choose the
 Replace button. If you want to add a file to a module in which you
 already have other declarations, choose the Merge button.

WHERE ARE BUILT-IN CONSTANTS LISTED IN MICROSOFT EXCEL?
===

All of the built-in constants available in Microsoft Excel are listed

in Visual Basic Reference Help. If you want to know which built-in
constants are available for a particular function, you can look them
up in Microsoft Excel in Visual Basic Reference Help or you can use
the Object Browser.

To look up a built-in constant in Microsoft Excel Help
--

1. In Microsoft Excel, choose Contents from the Help menu.

2. In the Microsoft Excel Help Contents window, choose Programming
 With Visual Basic.

3. In the Visual Basic Reference window, choose the Search button.

4. In the Search dialog box, type the name of the function you want to
 view.

5. Choose the Show Topics button.

6. From the Topics list, select the function you want to view, and
 choose the Go To button.

Any built-in constants that are available to the selected function
appear in bold in the help topic text for that function. For example,
the ConvertFormula method uses the following six built-in constants,
all listed in bold: xlA1, xlR1C1, xlAbsolute, xlAbsRowRelColumn,
xlRelRowAbsColumn, and xlRelative.

To look up constants with the Object Browser

1. In a Visual Basic module, choose Object Browser from the View menu.

2. From the Libraries/Workbooks list, select Excel.

3. From the Objects/Modules list, select Constants.

A list of the built-in constants appears in the Methods/Properties
list box.

For a complete list of the Microsoft Excel built-in constants, use the
XLCONST.XLS file located on the WE0993 disk that is included with this
Application Note.

USING THE LISTS OF BUILT-IN CONSTANTS ON THE WE0993 DISK
==

Two lists of these built-in constants are available in the XLCONST.XLS
file that is located on the enclosed WE0993 disk. For your
convenience, these lists are organized alphabetically and numerically.

To print the lists from the XLCONST.XLS file
--

1. Insert the WE0993 disk in a floppy disk drive on your computer.

2. In File Manager, copy the XLCONST.XLS file from the disk to a
 directory on your hard disk drive.

3. Start Microsoft Excel.

4. Open the XLCONST.XLS file that is located on the directory on your
 hard disk drive, and select the tab of the worksheet that you want
 to print.

5. From the File menu, choose Print.

The information in these lists is organized in the following format

 Constant | Object::Statement | Value
--
 <xlConstant> | | <Value>
 | <Object>::<Statement> |
 | <Object>::<Statement> |

where <xlConstant> represents the name of the built-in constant,
<Value> is the numerical value of the built-in constant, and <Object>
is the object to which <Statement> is applied. The following is an
example of an entry for the xlFilterInPlace built-in constant:

 Constant | Object::Statement | Value

 | |
 xlFilterInPlace | | 1
 | Range::AdvancedFilter |

In this example, the built-in constant is xlFilterInPlace, its value
is 1, and xlFilterInPlace is used by the AdvancedFilter method, which
is applied to Range.

Note that a built-in constant (xlNone for example) may be available to
multiple functions, so more than one object and statement may be
listed below each built-in constant.

TO OBTAIN THIS APPLICATION NOTE
===============================

 - On CompuServe, GEnie, and Microsoft OnLine, Application Notes
 are located in the Microsoft Software Library. You can find
 WE0993 in the Software Library by searching on the word WE0993,
 the Q number of this article, or S14650. WE0993 is a compressed,
 self-extracting file. After you download WE0993, run it to
 extract the file(s) it contains.

 - Application Notes are available by modem from the Microsoft
 Download Service (MSDL), which you can reach by calling (206)
 936-6735. This service is available 24 hours a day, 7 days a week.
 The highest download speed available is 14,400 bits per second (bps).
 For more information about using the MSDL, call (800) 936-4100 and
 follow the prompts. To obtain WE0993, download WE0993.EXE.
 WE0993.EXE is a compressed, self-extracting file. After you

 download WE0993, run it to extract the file(s) it contains.

 - On the Internet, Application Notes are located on the Microsoft
 anonymous ftp server, which you can reach by typing
 "ftp ftp.microsoft.com" (without the quotation marks) at the ">" command
 prompt.

 - If you are unable to access the source(s) listed above, you can
 have this Application Note mailed or faxed to you by calling
 Microsoft Product Support Services Monday through Friday, 6:00 A.M.
 to 6:00 P.M. Pacific time at (206) 635-7070 If you are outside the
 United States, contact the Microsoft subsidiary for your area. To
 locate your subsidiary, call Microsoft International Customer
 Service at (206) 936-8661.

Additional reference words: 5.00

XL5: Can't Use Group Edit Mode on Multiple Workbooks
Article ID: Q112681
--
The information in this article applies to:

 - Microsoft Excel for Windows version 5.0
--

SUMMARY
=======

Microsoft Excel version 5.0 does not allow group editing across multiple
workbooks. Sheets can be grouped within a workbook by selecting multiple
sheet tabs in the workbook.

NOTE: In Microsoft Excel version 4.0, you have the option of doing a group
edit across multiple workbooks by using the Group Edit command on the
Options Menu.

MORE INFORMATION
================

By grouping sheets, you can perform tasks on all of the sheets in the
group simultaneously. For example, you could enter a value in cell
A1 on all sheets in one operation.

Group adjacent sheets in the same workbook

Click the first sheet tab, hold down the Shift key and then click the
last sheet tab in the group you want to select.

Group nonadjacent sheets in the same workbook
--

Click the first sheet tab, hold down the CTRL key, and then click the
other sheet tabs that you want in the group.

To group sheets in the different workbooks

To group sheets in different workbooks, you must use a macro to
display the Microsoft Excel version 4.0 Group Edit box.

Note that it is recommended to use the Excel 5.0 method of creating
a group edit, but if there is a situation that requires a group
edit across more than one workbook, the procedure below will
provide that functionality.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of

this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

1. To use the Microsoft Excel version 4.0 Group Edit dialog box, enter the
 following in a Visual Basic module sheet:

 Sub Group_Edit()
 'Brings up the built in Excel Group Edit dialog
 Application.Dialogs(xlDialogWorkgroup).Show
 End Sub

2. To run the procedure, position the cursor in the line that reads
 "Group_Edit()" and either press the F5 key or choose Start from the Run
 menu.

REFERENCES
==========

For more information on using built in dialog boxes in a procedure do
the following:

1. In a module sheet, choose Object Browser from the View menu.

2. Select the Excel Library, and then choose the Constants object.

3. Scroll the list in the Methods/Properties box until you find the
 constants that begin with xlDialog.

Additional reference words: 5.00

XL5: Can't Use Dialog Method to Bring Up Spelling Dialog Box
Article ID: Q112771
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOM
=======

In Microsoft Excel 5.0, the Dialogs method in Visual Basic, Applications
Edition, can be used to display over 200 built-in dialog boxes. However,
the Spelling tool dialog box cannot be shown using the Dialogs method.

CAUSE
=====

The Spelling tool dialog box cannot be shown using this method because it
does not have a defined constant in Microsoft Excel 5.0.

WORKAROUND
==========

This problem only affects the ability to display the dialog box for the
Spelling tool. You can run the Spelling tool by using the CheckSpelling
method as in the following example:

 ActiveSheet.CheckSpelling

MORE INFORMATION
================

The Dialogs method can be used to display various built-in Microsoft Excel
5.0 dialog boxes. For example, the following Visual Basic, Applications
Edition, procedure uses the Dialogs method and the constant xlDialogOpen to
show the Open dialog box (the dialog box you get when you choose Open from
the File menu):

 Sub ShowFileOpen()
 Application.Dialogs(xlDialogOpen).Show
 End Sub

To look up constants with the Object Browser

1. In a Visual Basic module, choose Object Browser from the View menu.

2. From the Libraries/Workbooks list, select Excel.

3. From the Objects/Modules list, select Constants.

A list of the built-in constants appears in the Methods/Properties list
box. To find the dialog box constants, scroll the list until you find the
constants that begin with xlDialog. These constants correspond to dialog

box names; for example, the constant for the Find File dialog box is
xlDialogFindFile.

For more information about using constants in Microsoft Excel 5.0 and
Visual Basic, query on the following words in the Microsoft Knowledge Base:

 appnote and constants and using and visual and basic

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, page 236

Additional reference words: 5.00 msapps vbappcode

XL5: Dialogs(xlDialogFont) Changes Normal Style
Article ID: Q112785
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, using the Application.Dialogs(xlDialogFont)
built-in dialog box modifies the font of the Normal style of the worksheet,
not the font of the current selection.

MORE INFORMATION
================

In the Microsoft Excel version 4.0 macro language, you can use the
following macro code to invoke a built-in dialog box to change the font
attribute for the current selection:

 =FORMAT.FONT?()

In the above macro instruction, the question mark (?) tells Microsoft
Excel to display the Font dialog box so that you can select the font
changes to be applied to the current selection.

In Microsoft Excel version 5.0, the Visual Basic equivalent command is
as follows:

 Sub ChangeFontDialog()
 Application.Dialogs(xlDialogFormatFont).Show
 End Sub

This code displays a dialog box that changes the font of the current
selection. If you use xlDialogFont instead, you will modify the font
of the Normal style in the worksheet.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual

Basic User's Guide."

REFERENCES
==========

"Visual Basic User's Guide," version 5.0, Chapter 11,
"Displaying a Custom Dialog Box," "Displaying a Built-in Dialog Box"

For more information about Dialogs, choose the Search button in
Help and type:

 Dialogs

Additional reference words: 5.00 constant

XL5: OLE Automation, Can't Use Named Arguments in Visual Basic
Article ID: Q112813
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

Using a Microsoft Visual Basic application, you cannot call a
Microsoft Excel OLE automation object using named arguments. Instead,
you must use arguments in their correct order, using commas as
place holders even for omitted arguments.

In Visual Basic in Microsoft Excel (called the Microsoft Visual Basic
Programming System, Applications Edition), names are defined for the
arguments to their properties and methods. These names allow you to list
arguments in any order or omit preceding arguments.

The following is an instruction in Visual Basic in Microsoft Excel
that pastes the entire contents of the clipboard on a worksheet in
the current selection, skipping any blank cells that were copied:

 ' Using Named arguments
 Selection.PasteSpecial Paste:=xlAll, SkipBlanks:=True

To use the same instruction in the Visual Basic Standard or
Professional Edition, use the following syntax

 ' Using arguments in correct order, commas as place holders
 xl.Selection.PasteSpecial xlall, , True

where xl is an object variable that refers to Microsoft Excel (the
complete Visual Basic Standard or Professional Edition code is
included below). The extra comma after the xlall value is a
place holder for the Operation argument.

NOTE: In Microsoft Excel, there are many symbolic constants defined
that are used for application-specific settings. These constants all
begin with the letters "xl". For example, xlall in the above example
is used to paste all the contents of the clipboard with the
Paste.Special command.

These Microsoft Excel constants are available automatically in
Microsoft Visual Basic for Microsoft Excel. For the Standard or
Professional Editions of Visual Basic, you must either add the
Microsoft Excel constants file XLCONST.BAS to your project to use the
constant by name as in the above example, or you must use the numeric
value of the constant. The Microsoft Excel constants file includes
the name of each constant along with the value of that constant.

This constants file is included with the "Built-in Constants in
Microsoft Visual Basic Programming System, Applications Edition"

(WE0993) application note.

For more information about obtaining this application note, query on
the following words in the Microsoft Knowledge Base:

 xlconst.bas and application and note

To see a list of the Microsoft Excel constants, do the following:

1. Insert or select a module sheet.

2. From the View menu, choose Object Browser.

3. From the Libraries/Workbooks list, select Excel.

4. From the Objects/Modules list, select Constants.

The Methods/Properties list contains the Microsoft Excel constants.

MORE INFORMATION
================

The syntax for the PasteSpecial method in Visual Basic in Microsoft
Excel is the following

 object.PasteSpecial(Paste, Operation, SkipBlanks, Transpose)

where the named arguments are included in the parentheses.

In Visual Basic Standard or Professional Edition, if you want to
leave out an argument such as operation in the example above, you
must indicate the missing argument with a comma. Trailing commas at
the end of an instruction can be omitted. In the example above, it is
not necessary to add additional commas after the final argument
(SkipBlanks).

The following procedure in Visual Basic Standard or Professional
Edition opens the workbook TEST.XLS, selects the range A1:B6, copies
the cells to the clipboard, selects a new range, and pastes the entire
copied range (except for any blank cells) to this location.

 Sub Form_Load ()
 ' Dimension variable xl as object type
 Dim xl As object
 ' Activate Microsoft Excel and assign to variable xl
 Set xl = GetObject(, "Excel.Application.5")
 ' Open workbook TEST.XLS
 xl.Workbooks.Open "c:\excel\test.xls"
 ' Select range A1:B6 on active worksheet
 xl.Activesheet.Range("A1:B6").Select
 ' Copy selection to clipboard
 xl.Selection.Copy
 ' Select cell A11
 xl.Activesheet.Range("A11").Select
 ' Paste contents of clipboard to active cell
 ' Skip blank cells in copy range
 xl.Selection.PasteSpecial xlall, , True

 Set xl = Nothing
 End Sub

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide."

Additional reference words: 5.00

XL5: Can't Print Collated Copies
Article ID: Q112821
--
The information in this article applies to:

 - Microsoft Excel for Windows, 5.0
--

SYMPTOMS
========

In Microsoft Excel 5.0, when you print multiple copies of a document, you
cannot automatically collate the pages unless the printer driver supports
collation.

NOTE: In earlier versions of Microsoft Excel, a document can be collated
when you print it (regardless of whether the printer driver supports
collated printing).

STATUS
======

This method of printing is by design to allow for faster printing.

WORKAROUNDS
===========

In Microsoft Excel 5.0, to print collated copies of a file, do any of the
following:

 - Print the document to a file on your hard drive and copy the file
 to the printer multiple times from the MS-DOS prompt.

 -or-

 - Write a macro to print the selected file multiple times. Note that
 this option will be very time consuming because Microsoft Excel has
 to print single copies of the file multiple times. It is much
 faster to print a file multiple times. (Sample code is provided below.

 -or-

 - If your printer driver provides the option to print collated copies,
 use this option. You can set this option by choosing the Print command
 on the File menu and then choosing Printer Setup in Microsoft Excel
 to access the printer driver settings.

MORE INFORMATION
================

An example of collated printing is when you print two copies of a file such
that page 1 and page 2 of the first copy are printed, and then page 1 and
page 2 of the second copy are printed. In contrast, uncollated printing
would print page 1, and then another page 1, and then page 2, and then
another page 2.

Printer drivers that have a Copies box in the Print dialog box support
collation. Most UNIDRV-based drivers support collation; some printer
drivers, such as the Hewlett-Packard (HP) DeskJet, do not. In most
programs, you will not be able to clear the Collated Copies option in the
Print dialog box when you are using one of these drivers.

SAMPLE VISUAL BASIC FOR APPLICATIONS CODE
===

The following Visual Basic for Applications code allows you to print
multiple copies.

'A procedure to print multiple copies
Sub Example()
 Ncopies = Application.InputBox("Please enter number off copies _
 to print: ", "Print Multiple Copies", 1, , , , , 1)
 For counter = 1 To Ncopies
 ActiveWindow.SelectedSheets.PrintOut Copies:=1
 Next
End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

Additional reference words: 5.00 multiple copies dialogue VBAppCode

XL5: "Invalid Procedure Call" with SendKeys Statement
Article ID: Q112864
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

The error message "Run Time Error '5': Invalid Procedure Call" may be
generated when you use the SendKeys statement in a Visual Basic procedure
to send multiple spaces.

WORKAROUND
==========

To work around this problem, use the Application.SendKeys statement in
place of the SendKey statement, as demonstrated below:

Sub SendKeysTest()
 Application.SendKeys "{ 20}" 'There are 20 spaces before the
 number 20
End Sub

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

MORE INFORMATION
================

Steps to Reproduce Behavior

The SendKeys statement in Visual Basic, Applications Edition, sends one or
more key commands to the active window as if the they were typed at the
keyboard. To specify repeating keys in the SendKeys statement, the syntax
used is "{key number}" (without the quotation marks). A space must be
placed between key and number. For example, {LEFT 42} means press the LEFT
ARROW key 42 times and {h 10} means press h 10 times.

The following example should send 20 spaces to the active window:

Sub SendKeysTest()
 SendKeys "{ 20}" 'There are two spaces before the number 20
End Sub

However, if you run this procedure, your receive the error message "Run
Time Error '5': Invalid Procedure Call."

Additional reference words: 5.00 vbappcode

XL5: Docerr: VB for Apps Sub Example Incorrect
Article ID: Q113046
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

The following Visual Basic Help example for the Sub statement contains an
incorrect variable:

 Sub SubComputeArea(Length, Width) ' Sub with two arguments.
 Dim Area As Double ' Declare local variable.
 If Length = 0 Or Width = 0 Then ' If either argument = 0.

 Exit Sub ' Exit Sub immediately.

 End If

 Area = Length * Width ' Calculate area of
 rectangle.
 Debug.Print Area ' Print Area to Debug
 window.

 End Sub

In the example, a variable called Width is used. =Width is a reserved
keyword in Visual Basic and cannot be used as a variable.

WORKAROUND
==========

Changing each reference to Width in the example to gWidth (or another
variable name that is not reserved) will allow the example macro to
function correctly. The following example is a corrected version of the
sample procedure:

 Sub SubComputeArea(Length, gWidth) ' Sub with two arguments.
 Dim Area As Double ' Declare local variable.
 If Length = 0 Or gWidth = 0 Then ' either argument = 0.

 Exit Sub ' Exit Sub immediately.

 End If

 Area = Length * gWidth ' Calculate area of rectangle.
 Debug.Print Area ' Print Area to Debug window.

 End Sub

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,

including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Additional reference words: 5.00 vbappcode

XL5: Visual Basic Macro to Concatenate Columns of Data
Article ID: Q113237

The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0

In Microsoft Excel 5.0, you can use the following Visual Basic,
Applications Edition, macro to concatenate the data from two adjacent cells
and display the result in the cell to the right of the concatenated cells.

Visual Basic Macro to Concatenate Two Cells

Sub ConcatColumns()

 Do While ActiveCell <> "" 'loops until the active cell is blank

 'The "&" must have a space on both sides or it will be
 'treated as a variable type of long integer. Enter the following two
 'lines as a single line.

 ActiveCell.Offset(0, 1).FormulaR1C1 = ActiveCell.Offset(0, -1) & _
 " " & ActiveCell.Offset(0, 0)

 ActiveCell.Offset(1, 0).Select
 Loop

End Sub

NOTE: The statement ActiveCell.Offset(0, 1).FormulaR1C1 can be replaced
with the statement ActiveCell.Offset(0, 1).Formula. They can be used with
equal success if you are using text and numbers only (not formulas). The
R1C1 used at the end of the first statement refers to row one, column one
and is the form used in examples in Help.

To run the macro:

1. In a Visual Basic module, enter the above macro code.

2. Switch to the worksheet that contains the data that you want to
 concatenate.

3. Make the top cell in the second column of data the active cell. For
 example, if your data is contained in the ranges A1:A100 and B1:B100,
 make B1 the active cell.

4. From the Tools menu, choose Macro, select the ConcatColumns macro, and
 choose Run.

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and

Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

Additional reference words: 5.00 vbappcode operator ampersand

XL5: User-Defined Function to Put Sheet Name in a Cell
Article ID: Q113392

The information in this article applies to:

 - Microsoft Excel for Windows version 5.0

SUMMARY
=======

The following Visual Basic, Applications Editions, procedure used in
Microsoft Excel version 5.0, results in a user-defined function,
Sheetname(), that will place a cell's sheet name into the cell of a
Microsoft Excel worksheet:

Function Sheetname()
 Application.Volatile
 Sheetname = Application.Caller.Parent.Name
End Function

MORE INFORMATION
================

For more information about creating user-defined functions in
Microsoft Excel 5.0, choose the Search button in Help and type:

 user-defined function

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

REFERENCES
==========

Additional Reference Words 5.00

XL5: Using Visual Basic to Multiply Cell Contents
Article ID: Q113394

The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0

SUMMARY
=======

In Microsoft Excel, the following Visual Basic procedure multiplies each
cell in the currently-selected range by a user-supplied input and displays
the results in the original cells on the active worksheet. The procedure
then determines the number of rows and columns in the selection.

For example, if the currently-selected range is A1:C3, and you enter 5 into
the input box, the subroutine will multiply each cell in the range by 5.

Sample Visual Basic Code

Sub MultCellsInRange()
 Mult = InputBox("Enter the number to be used as the multiplier:")
 For Each xCell in Selection
 xCell.Value = xCell.Value * Mult
 Next xCell
End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

Additional reference words: 5.00 vbappcode

XL5: Caption Property of Menu Contains Ampersands
Article ID: Q113490
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SYMPTOM
=======

In Microsoft Excel version 5.0 for Windows, the Caption property of a Menu
or a MenuItem will contain an ampersand character (&) if the Menu or
MenuItem has a quick key assigned to it. If an ampersand actually appears
in the name of the Menu or MenuItem, the Caption property for that item
will contain two ampersands right next to each other.

When you read the Caption property in a Visual Basic macro (for example, if
you display this property in a message box), this ampersand will appear as
part of the text for the caption.

CAUSE
=====

This behavior occurs because, although ampersands are used to assign quick
keys to a Menu or MenuItem, they are interpreted as part of the caption
text.

MORE INFORMATION
================

When you create the Menu or MenuItem, either in a macro or by using the
Menu Editor, an ampersand is used to indicate that the next character is
the designated quick key.

For example, if you want to add the command "Begin Process" to a menu, and
you want the P in "Process" to be a quick key, you would type "Begin
&Process" in the Caption field in the Menu Editor. The "Begin Process" menu
item would then appear with an underline under the letter P.

If you want a Menu or MenuItem to actually contain an ampersand, you
must enter two ampersands directly adjacent to each other.

For example, to create a Menu called "Shipping & Receiving", you
would enter "Shipping && Receiving" in the Caption field. If you also
wanted to assign a quick key to the S in "Shipping", the Caption
field would contain "&Shipping && Receiving".

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure

is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Example 1--Results of reading the Caption property
of a Menu or MenuItem that has a quick key assigned to it

To run this first example, position the cursor in the line which reads "Sub
GetCaptions1()" and either press the F5 key or choose Start from the Run
menu.

'--
Option Explicit

Sub GetCaptions1()

 'Dimension variables.
 Dim Alpha As String

 'Put the Caption of the third menu item of the first menu of the
 'first menu bar into the variable Alpha.
 Alpha = MenuBars(1).Menus(1).MenuItems(3).Caption

 'Show the Caption. It should be "&Close".
 MsgBox Alpha

 'Put the Caption of the first menu of the first menu bar into the
 'variable Alpha.
 Alpha = MenuBars(1).Menus(1).Caption

 'Show the Caption. It should be "&File".
 MsgBox Alpha
End Sub
'--

Example 2--The results of reading the Caption property
of a Menu or MenuItem that actually contains an ampersand

To run the second example, position the cursor in the line which reads
"Sub GetCaptions2()" and either press the F5 key or choose Start from
the Run menu.

'--
Option Explicit

Sub GetCaptions2()

 'Dimension variables.
 Dim Bravo As String

 'Add a menu item "Shipping & Receiving" to the first menu bar.
 'Enter the following two lines as a single line.
 MenuBars(1).Menus.Add Caption:="&Shipping && Receiving", _
 Before:="File"

 'Put the Caption of the first menu of the first menu bar into the
 'variable Bravo.
 Bravo = MenuBars(1).Menus(1).Caption

 'Show the Caption. It should be "&Shipping && Receiving".
 MsgBox Bravo
End Sub
'--

Additional reference words: 5.00

XL5: Visual Basic Code to Use Instead of DIRECTORIES()
Article ID: Q113491
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

This article contains sample Visual Basic code that you can use to
duplicate the behavior of the DIRECTORIES() function that was included in
the Microsoft Excel 4.0 FILEFNS.XLA add-in.

NOTE: The FILEFNS.XLA add-in is not included in Microsoft Excel 5.0.

MORE INFORMATION
================

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

Sample Visual Basic Code

' The main procedure calls dir_test and passes it to the specified
' directory.

Sub main()
 'Always make sure the path ends with a backslash.
 'Calls dir_test and passes it the directory to check
 dir_test "c:\"
End Sub

' The dir_test procedure returns an array of all subdirectories contained
' in the specified directory. To do this, it creates the array dir_array;
' dir_array is declared as Static to hold its values after the macro has
' finished.

Sub dir_test(directory_text)

 'Dimensions a variable to hold the temp Directory name
 Dim temp_var As String

 'Dimensions a dynamic array to hold the Directory Array
 Static dir_array() As String

 'Turns off Error Checking
 On Error Resume Next

 'Call the DIR function and returns the first item the Directory
 temp_var = Dir(directory_text, vbDirectory)

 'Initializes the variable for building the array
 counter = 0

'Set a loop until the DIR function returns
Do Until temp_var = ""
 'Temp_var stores the individual Directory name
 temp_var = Dir()
 'Checks to see if temp_var is an empty string
 If temp_var <> "" Then
 'The following code will create an array of the directories
 If GetAttr(directory_text + temp_var) = 16 Then
 'enlarge the array to hold a new item
 ReDim Preserve dir_array(counter)
 'add directory to the array
 dir_array(counter) = temp_var
 'This line just shows the variable was added to the array
 'You can comment this line out when using this function
 MsgBox dir_array(counter)
 'Increase counter to make room for the next directory
 counter = counter + 1
 End If
 End If
Loop
End Sub

REFERENCES
==========

For more information about FILEFNS.XLA and the Visual Basic equivalents for
those functions, query on the following words in the Microsoft Knowledge
Base:

 FILEFNS.XLA and add-in and maintenance

Additional reference words: 5.00 Array Dir list directory

XL5: Shell Function Doesn't Accept Built-in Constants
Article ID: Q113631
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0 for Windows, it is not possible to use built-
in constants, such as xlNormal, xlMinimized, or xlMaximized, for the
"windowstyle" argument of the Visual Basic Shell function. This behavior is
by design.

MORE INFORMATION
================

The Visual Basic Shell function is used to run an executable program from a
Visual Basic subroutine. Here is an example of the Shell function that will
run the Microsoft Windows Notepad program in a normal window with focus:

 RetVal = Shell("c:\windows\notepad.exe", 1)

The second argument (in this case, 1) is the windowstyle argument of the
function. Valid windowstyle values are as follows:

 Value Window Style

 1, 5, 9 Normal with focus
 2 Minimized with focus
 3 Maximized with focus
 4, 8 Normal without focus
 6, 7 Minimized without focus

The windowstyle you specify determines how the application's window
will appear when it is started.

It is not possible to use built-in constants such as xlNormal, xlMinimized,
or xlMaximized in place of the standard numerical values shown here. This
is because the values of the built-in constants are not valid when applied
to the Shell command.

The values of the various built-in constants that might be expected
to work as windowstyle arguments are as follows:

 Constant Value

 xlNormal -4143
 xlMinimized -4140
 xlMaximized -4137

If you try to use a built-in constant for the windowstyle argument,
you will receive the following error message:

 Run-time error '5':
 Invalid procedure call

Steps to Reproduce Behavior

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

The following examples illustrate proper, and improper, use of the
windowstyle argument in the Shell function.

'--
Option Explicit

Sub ProperShellFunction()

 'Dimension variables.
 Dim RetVal As Integer

 'This Shell function will work because the windowstyle argument is
 'valid (1).
 RetVal = Shell("c:\windows\notepad.exe", 1)
End Sub

Sub ImproperShellFunction()

 'Dimension variables.
 Dim SecondRetVal As Integer

 'This Shell function will NOT work because the windowstyle argument
 'is invalid (cannot use this built-in constant in this case).
 SecondRetVal = Shell("c:\windows\notepad.exe", xlNormal)
End Sub
'--

REFERENCES
==========

For more information on the Shell function, choose the Search button
in Visual Basic Help and type:

 Shell

Additional reference words: 5.00

XL5: Visual Basic Nested Case Statement Example
Article ID: Q113659
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, you can use nested case statements in
Visual Basic to execute one of several expressions based on a
particular value or expression evaluation similar to an IF statement.

MORE INFORMATION
================

The following example returns a text expression in the next column,
depending upon whether a particular date falls within a specific beginning
and ending date range. The active cell on the worksheet should be the upper-
left cell containing the dates.

Macro Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Sub TestDate()

'The following nested case statement determines if a date within
'a column of dates falls within a certain range. If the beginning date
'or the ending date is within or out of the range, it displays a message
'in the next column.

 begin_date = DateValue(InputBox(prompt:="Enter the beginning date"))
 end_date = DateValue(InputBox(prompt:="Enter the ending date"))

 Do While ActiveCell <> ""

 'Checks the date of the current cell.
 Select Case ActiveCell
 Case Is >= begin_date

 'Nested Case to check for ending date of current cell.
 Select Case ActiveCell

 Case Is <= end_date
 ActiveCell.Offset(0, 2) = "Meets criteria"

 'Does this if the ending date is out of range.
 Case Is >= end_date
 ActiveCell.Offset(0, 2) = "Ending date out of range"

 End Select

 'Does this if the beginning date is out of range.
 Case Else
 ActiveCell.Offset(0, 1) = "Beginning date is out of range"
 End Select

 'Selects the next cell on the active worksheet.
 ActiveCell.Offset(1, 0).Select

 Loop

End Sub

Additional reference words: 5.00 VBA HOWTO nest case if

XL5: Can't Select Label Attached to Filled Radar Series
Article ID: Q113795
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, it may not be possible for a Visual
Basic subroutine to select an individual data label attached to a
filled radar series.

WORKAROUND
==========

If your subroutine must select an individual data label attached to a
filled radar series, you can use the Application.ExecuteExcel4Macro
method to select the label.

Normally, if you want to select the fourth label in the second
series, you would use the following Visual Basic code:

 ActiveChart.SeriesCollection(2).Points(4).DataLabel.Select

However, if the label is attached to a filled radar series, you must use
the following instead:

 Application.ExecuteExcel4Macro "SELECT(""Text S2P4"")"

Note that the double quotation marks inside the parentheses are necessary
because the method will remove a complete set when the command is executed.

MORE INFORMATION
================

In Microsoft Excel, there are two types of radar charts:

 Type of Radar Chart Description
 --

 Wireframe Lines connect the points but
 are not filled.

 Filled All lines connect the points
 and a fill pattern is
 applied such that a polygon
 is formed, with the series
 forming the perimeter of the
 polygon.

In the Microsoft Excel ChartWizard, only the type 6 radar chart is a filled
radar chart (all other types of radar chart are wireframes). You cannot mix

a wireframe and a filled radar series in the same chart.

If you are recording a Visual Basic macro and you select an individual data
label attached to a series (in this example, the fourth point of the second
series), the recorded code looks like this:

 ActiveChart.SeriesCollection(2).Points(4).DataLabel.Select

If you run this line of code when the second series is a filled radar
series, you will receive the error message

 Run-time error '1006':
 Unable to get the DataLabel property of the Point class

The code will run correctly if the series is any other type of series,
including a wireframe radar series.

To select an individual data label attached to a filled radar series,
you must use the Application.ExecuteExcel4Macro method, shown above.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

This Visual Basic code example selects the label attached to the fifth
point of the second series in a chart and moves the label to the
coordinates 20,20. The series is a filled radar series, so the
Application.ExecuteExcel4Macro is used to avoid the error described above.

'--

Sub MoveDataLabel()

 'Select the fifth point (P5) of the second series (S2).
 'Normally, you would use
 '
 ' ActiveChart.SeriesCollection(2).Points(5).DataLabel.Select
 '
 'to do this, but this method does not work with a filled radar
 'chart.
 Application.ExecuteExcel4Macro "SELECT(""Text S2P5"")"

 'Change the selection's (the label's) Left property.
 Selection.Left = 20

 'Change the selection's (the label's) Top property.
 Selection.Top = 20
End Sub
'--

Additional reference words: 5.00

XL5: Recorded AutoFit Selection Changes Entire Row or Column
Article ID: Q113991
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

In Microsoft Excel 5.0, when you record a macro that includes the AutoFit
Selection command, the resulting macro will apply the AutoFit command to
the entire row or column rather than to the desired selection.

CAUSE
=====

The recorded Visual Basic code uses the EntireColumn property to qualify
the AutoFit method.

The only objects that you can use with the AutoFit method are EntireColumn
or EntireRow. Using the Selection or Range objects will result in an error
when you run the macro. The AutoFit method does not allow the current
selection as an object qualifier, and, therefore, is not able to imitate
the functionality of AutoFit Selection menu command.

WORKAROUND
==========

To imitate the behavior of the AutoFit Selection command in a Visual Basic
macro, you can use the ExecuteExcel4Macro method to call the Microsoft
Excel 4.0 Column.Width function.

The following subroutine illustrates a method to perform an AutoFit
on the current selection rather than the entire column. To perform
the AutoFit on a row rather than a column, substitute the Row.Height
macro function for the Column.Width function.

Sub AutoFitColumnSelection()

 'Call the Microsoft Excel 4.0 Macro Function
 'from a Visual Basic subroutine.
 Application.ExecuteExcel4Macro "Column.Width(,,,3)"

End Sub

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.

Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

Additional reference words: 5.00 auto-fit

XL5: Error Message Using Name of Constant with Show Method
Article ID: Q114183
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

When you use the Show method of the Dialog Object in a Visual Basic
macro in Microsoft Excel, and you use the name of a built-in constant
as the value of an argument, the following error message may appear:

 Run-time error '1004':

 Show method of Dialog class failed

CAUSE
=====

This behavior is by design in Microsoft Excel. You cannot use the name of a
built-in constant as an argument for the Show method of the Dialog Object.
Because some constants are used as arguments for multiple dialog boxes,
there is no way to uniquely identify a constant by name.

WORKAROUNDS
===========

To avoid receiving this error message when you use arguments with the
Show method of the Dialog object, use the value of the argument as
determined by the Microsoft Excel version 4.0 macro command instead
of the name of the constant. For example, if you are using the Show
method to display the Save As dialog box, and you want to save the
file to the Microsoft Excel Workbook file format, use the following code:

 Sub SaveAs_Dlg()
 Application.Dialogs(xlDialogSaveAs).Show arg1:="TEST.XLS", arg2:=1
 End Sub

When you run this macro, the Save As dialog box appears and Microsoft
Excel Workbook is selected in the Save File As Type list because the
value of the Microsoft Excel workbook file format argument is 1.

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line

to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

MORE INFORMATION
================

To find the value of an individual argument to use with the Show
method of the Dialog object in Microsoft Excel, do the following:

1. In Microsoft Excel, choose Contents from the Help menu.

2. From the Microsoft Excel Help Contents window, select Reference
 Information.

3. From the Reference Information window, select Microsoft Excel Macro
 Functions Contents.

4. Select the Alphabetical List Of Macro Functions option.

5. From the Alphabetical List Of Macro Functions, select the command that
 corresponds to the dialog box you want to display using the Show method.
 For example, if you want to display the Save As dialog box using the
 Dialog object, select the Save.As command from the Alphabetical List Of
 Macro Functions.

Additional reference words: 5.00

XL5: OLE Automation Error Using Quit Method with GetObject
Article ID: Q114225
--
The information in this article applies to:

 - Microsoft Excel for Windows, version 5.0
--

SYMPTOMS
========

If you use the GetObject function with a filename in a Microsoft Visual
Basic version 3.0 procedure to open a Microsoft Excel workbook and you then
use the Quit method to quit Microsoft Excel, the following error message
appears:

 OLE Automation error. Worksheet does not have Quit method.

CAUSE
=====

When you use the GetObject function with a filename to open a file,
the object linking and embedding (OLE) Automation object that is
created is a Worksheet object, not the application object. This error
occurs when you use the Quit method with the Worksheet object,
because the Quit method does not apply to a Worksheet object.

WORKAROUND
==========

To use the Quit method to quit Microsoft Excel after creating an OLE
Automation object in an application that uses Visual Basic, do either
of the following:

 - Use the Parent property to return the Application object and use the
 Quit method as in the following Visual Basic procedure:

 ' Dimension variable x as Object type
 Dim x As Object
 ' Set x equal to Microsoft Excel Worksheet object
 Set x = GetObject("C:\EXCEL\BOOK1.XLS")
 ' Quit Microsoft Excel
 x.Application.Quit

 -or-

 - Use the class argument of the GetObject function to return the
 Application object as the OLE Automation object, then open the desired
 workbook file as in the following Visual Basic procedure:

 ' Dimension variable x as object type
 Dim x As Object
 ' Set x equal to Microsoft Excel Application object
 Set x = GetObject("", "Excel.Application.5")
 ' Open workbook BOOK1.XLS

 x.Workbooks.Open "C:\EXCEL\BOOK1.XLS"
 ' Quit Microsoft Excel
 x.Quit

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of
merchantability and/or fitness for a particular purpose. This Visual
Basic procedure is provided 'as is' and Microsoft does not guarantee
that it can be used in all situations. Microsoft does not support
modifications of this procedure to suit customer requirements for a
particular purpose. Note that a line that is preceded by an
apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the
procedure. Note also that an underscore character (_) indicates that
code continues from one line to the next. You can type lines that
contain this character as one logical line or you can divide the
lines of code and include the line continuation character. For more
information about Visual Basic for Applications programming style,
see the "Programming Style in This Manual" section in the "Document
Conventions" section of the "Visual Basic User's Guide."

MORE INFORMATION
================

For more information about using the GetObject function or the
CreateObject function to activate a Microsoft Excel object as an OLE
Automation object, query on the following words in the Microsoft
Knowledge Base:

 ole and automation and createobject and getobject

REFERENCES
==========

For more information about the Quit Method, choose the Search button
in the Visual Basic Reference and type:

 Quit Method

Additional reference words: 5.00 3.00

XL5: Command to Create Add-in File from Visual Basic Module
Article ID: Q114436
--
The information in this article applies to:

- Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, there is no built-in method in Visual
Basic, Applications Edition, that will perform a Make Add-In operation. To
create an add-in from a Visual Basic subroutine, you must use the
Application.ExecuteExcel4Macro method to call the VBA.MAKE.ADDIN macro
command.

MORE INFORMATION
================

In Microsoft Excel version 5.0, you can create add-in files by choosing
Make Add-In from the Tools menu in a Visual Basic module or Microsoft Excel
4.0 macro sheet. When you do this, you are prompted to enter a filename for
the add-in that you want to create.

To create an add-in file from a Visual Basic subroutine, use the following
line of code

 Application.ExecuteExcel4Macro "VBA.MAKE.ADDIN(""TEST.XLA"")"

where TEST.XLA is the name of the add-in file to be created.

Note that the following line of code will NOT create an add-in file (even
though it seems like it should perform the same function):

 ActiveWorkbook.SaveAs "TEST.XLA", xlAddIn

This line of code will save the active workbook as a Normal workbook
with the filename TEST.XLA.

Visual Basic Code Example

Microsoft provides examples of Visual Basic procedures for
illustration only, without warranty either expressed or implied,
including but not limited to the implied warranties of merchantability
and/or fitness for a particular purpose. This Visual Basic procedure
is provided 'as is' and Microsoft does not guarantee that it can be
used in all situations. Microsoft does not support modifications of
this procedure to suit customer requirements for a particular purpose.
Note that a line that is preceded by an apostrophe introduces a
comment in the code--comments are provided to explain what the code is
doing at a particular point in the procedure. Note also that an
underscore character (_) indicates that code continues from one line
to the next. You can type lines that contain this character as one

logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This
Manual" section in the "Document Conventions" section of the "Visual
Basic User's Guide."

This code shows an example of the correct way create an add-in file
using a Visual Basic subroutine:

'--
Sub MakeAddIn()

 'This command makes an add-in called TEST.XLA, based on the
 'active workbook.
 Application.ExecuteExcel4Macro "VBA.MAKE.ADDIN(""TEST.XLA"")"
End Sub
'--

Additional reference words: 5.00

XL5: Can't Set Value Property in For-Each with Variant Type
Article ID: Q107903
--
The information in this article applies to:

 - Microsoft Visual Basic Programming System, Applications Edition
 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In Microsoft Excel version 5.0, the default value property of an object or
an element in an array cannot be set with a For Each loop if the loop
control variable is a Variant data type.

MORE INFORMATION
================

The following macro example uses a For Each loop to concatenate the letter
"A" to the values in a range and then displays the results in a message
box. The loop counter in this macro is defined with a Variant data type.
When the loop attempts to change the value of the cells in the range by
concatenating the variant loop counter, the routine appears to run properly
and the new value appears in a message box as expected. However, when a
second For Each loop redisplays the values in the range by calling the
variant loop counter, the range values have reverted back to their original
state (the range values no longer have the "A" concatenated to them).

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code-- comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

Macro Example

' In this macro, cellRange is an Object variable
' and cellItem is a Variant variable.

Sub loopTest()

 Set cellRange = ActiveSheet.Range(Selection.Address)

' The following Concatenates an "A" to the default value of each cell.

 For Each cellItem In cellRange
 cellItem = cellItem & "A"
 MsgBox cellItem
 Next

'The cellRange will return the default value (not value&"A"), even though
'the loop above changed the value of the object.

 For Each cellItem In cellRange
 MsgBox "n = " & cellItem
 Next

End Sub

The connection between the object and the variant is broken when the loop
attempts to write to the value property of the object. The result of this
break is that the new value is assigned to the Variant variable, but the
object is not updated. When the first loop references the variant, the
Variant variable passes the value that it is holding (instead of getting
the object's value property) and the loop appears to work. However, when
the second loop references the Variant variable, it is passed the value
that the variable is reading from the object--which was never changed.

This behavior is by design.

WORKAROUND
==========

If you are working with a collection of objects, use an explicit value
property (cellItem.value=cellItem & "A") or use the Dim statement to
declare the control variable as an Object rather than a Variant data type.

If you are working with an array, there is no workaround: when you use a
For Each loop with an array, you have read-only access. Although you do not
receive an error message if you attempt to write to an array, the array
element will not be written to.

Additional reference words: 5.00

How to Manipulate Object's Properties w/ Property Set/Let/Get
Article ID: Q108731
--
The information in this article applies to:

 - Microsoft Visual Basic Programming System, Applications Edition,
 version 1.0
 - Microsoft Excel for Windows, version 5.0
--
SUMMARY
=======

In Visual Basic for Applications in Microsoft Excel version 5.0 for
Windows, you can create your own objects by using modules and then
manipulate the properties of those objects by using the Property Set,
Property Get, and Property Let statements. This article explains how to use
the Property Set/Let/Get syntax.

MORE INFORMATION
================

Usually, you will define either Property Let and Property Get or Property
Set and Property Get. If a property value stores an object reference, use
Property Set and Property Get. If a property value stores a variant
reference, use Property Let and Property Get.

In the following example, you'll create the object module SGLCount in step
2 and then create another module that uses SGLCount in step 3.

1. Start Microsoft Excel version 5.0. A new Workbook (sheet1) is created by
 default.

2. Add a new module by using the Insert menu (ALT, I, M, M) or by clicking
 the Module button on the Visual Basic for Applications toolbar. Name the
 module SGLCount. Add the following code to the SGLCount module:

 Option Explicit
 Private iMyCount As Integer
 Private rMyRange As Variant

 ' Use Property Let for Variants
 Property Let MyCount(iCount As Variant)
 iMyCount = iCount
 End Property

 Property Get MyCount()
 MyCount = iMyCount
 End Property

 ' Use Property Set for Objects
 Property Set MyRange(rRange As Range)
 ' Use Set because rRange is a Range Object
 Set rMyRange = rRange
 End Property

 Property Get MyRange()
 Set MyRange = rMyRange
 End Property

3. Add another new module by using the Insert menu (ALT, I, M, M) or by
 clicking the Module button on the Visual Basic for Applications toolbar.
 Use the default name for the module (module1). Add the following code to
 the module1 module:

 Option Explicit
 Sub TestCount()

 Dim rRange As Range

 Set rRange = ActiveSheet.Range("B1")
 rRange.Value = 7777

 ' Execute module SGLCount Property Set MyRange:
 Set SGLCount.MyRange = ActiveSheet.Range("B1")
 ActiveSheet.Range("A1").Select

 ' Execute module SGLCount Property Set MyCount:
 SGLCount.MyCount = 5

 ' Execute module SGLCount Property Get MyRange:
 rRange = SGLCount.MyRange

 ' Execute module SGLCount Property Get MyCount:
 rRange.Value = SGLCount.MyCount
 rRange.Select

 End Sub

4. Add a command button (Command1) to Sheet1 and assign the TestCount macro
 to the button. To assign a macro, place the mouse insertion point on
 the Command1 button and click the right mouse button. Then select Assign
 Macro.

Additional reference words: 1.00 5.00
KBCategory:
KBSubcategory:

Line Numbers Greater Than 65529 Not Supported
Article ID: Q111869
--
The information in this article applies to:

 - Microsoft Visual Basic Programming System, Applications Edition,
 version 1.0
--

SYMPTOMS
========

In Microsoft Visual Basic Programming System, Applications Edition, when
you type a line number greater then 65529, type code, and then press ENTER
to start a new line, you may receive the following error message:

 Expected: line number or label or statement or end of statement

If you do not have the Display Syntax Errors option selected, you receive a
syntax error when you run the procedure.

CAUSE
=====

Visual Basic, Applications Edition does not support line numbers greater
than 65529.

WORKAROUND
==========

To work around this problem, do one of the following:

 - Use line numbers less than 65,529

 -or-

 - Use line labels to identify a single line of code. A line label
 0 can contain numbers, but must start with a letter and end with a
 colon.

MORE INFORMATION
================

A line number is used to identify a single line of code. This number can be
any combination of digits that is unique within the module. Line numbers
can begin in any column as long as they are the first non-blank characters.

Line numbers greater than 65529 are treated as line labels and cannot be
returned by the Erl function.

NOTE: Line numbers are used for backward compatibility; it is not
recommended that you use them in your procedures.

Additional reference words: 1.00 5.00 linenum lables

Null Character Truncates String in Visual Basic
Article ID: Q112772
--
The information in this article applies to:

 - Microsoft Visual Basic Programming System, Applications Edition,
 version 1.0
 - Microsoft Excel for Windows, version 5.0
--

SUMMARY
=======

In a Visual Basic procedure, if you use a string that contains the null
value in either the SendKeys statement, the MsgBox function, or the Format
function, the string is truncated at the null character.

NOTE: This situation is true for both the Microsoft Excel 5.0 for Windows
SendKeys statement (using Application.SendKeys) and the Visual Basic,
Applications Edition, SendKeys (using just SendKeys) statement.

MORE INFORMATION
================

The SendKeys statement sends keystrokes to the active windows as if they
were typed on the keyboard. Attempting to send a null character causes the
string being sent to be truncated at the location of the null character.

You can use the MsgBox function to display a string expression as a
message. However, if you use a string expression that contains the null
character in the MsgBox function, the characters in the string after the
null character do not display in the message box.

The Format function allows you to return an expression such as a string in
a named or user-defined format. If you use the Format function in the Debug
window to format a string expression that contains the null character, and
if the null character is the first character in the string, the value 0 is
returned.

Steps to Reproduce Behavior

The following Visual Basic procedure uses the SendKeys statement to send
the word "Testing" to the active window:

 Sub Testing()
 SendKeys "Testing"
 End Sub

If you add a null character before the word Testing, the word "Testing" is
not sent to the active window. In the following procedure, the keystrokes
are not sent to the active window.

 Sub Testing()
 SendKeys Chr(0) + "Testing"
 End Sub

If a null character is placed between two (or more) concatenated strings,
the string is truncated at the null character. In the following example,
the word "Testing" is sent to the active window, but the string "One, Two,
Three" is not.

 Sub Testing()
 SendKeys "Testing" + Chr(0)+ "One, Two, Three"
 End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided 'as is' and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line-
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the "Visual Basic User's
Guide."

REFERENCES
==========

For more information about the Format Function, choose the Search button in
the Visual Basic Reference and type:

 Format

For more information about the Chr Function, choose the Search button in
the Visual Basic Reference and type:

 Chr

Additional reference words: 5.00 Nul Chr$ vbappcode empty

PRB: Error When Excel VBA Proc & Implicit Var Have Same Name
Article ID: Q113947
--
The information in this article applies to:

- Microsoft Visual Basic, Applications Editions, version 1.0
- Microsoft Excel, version 5.0
- Microsoft Office for Windows, version 4.0

SYMPTOMS
========

In an Excel Visual Basic for Applications module, if you have a procedure
and an implicitly declared variable that share the same name, you will get
one of two possible errors:

 Type-declaration character does not match declared data type.

 -or-

 Expected function or variable.

RESOLUTION
===========

Use the Dim statement to explicitly dimension the local variable (ThingOne$
or ThingOne):

 Sub ThingOne

 End Sub

 Sub ThingTwo
 Dim ThingOne$ ' Or: Dim ThingOne As Variant
 ThingOne$ = "hi"
 End Sub

Or add the Option Explicit statement at the beginning of your code module
to force you to explicitly dimension all variables.

STATUS
======

This behavior is by design. The local variable ThingOne (or ThingOne$) must
be explicitly declared or you will get an error. Sub procedures within
modules are visible to each other in the Visual Basic, Applications
Edition.

Because ThingOne is visible inside ThingTwo (see the code in the More
Information section below) and Sub and Function procedures may be called
without parameters the reference to ThingOne as a variable is ambiguous.

In the first case, the type char is checked first. The type is determined
to be a String. However, the Sub declaration is equivalent to a function

which has a void return. The $ contradicts this void return, so you get an
error.

In the second case, without the type character, Visual Basic, Applications
Edition checks the return type of the procedure. The return for a Basic Sub
is void so it results in the second error.

This behavior can be avoided altogether by using the Option Explicit
statement.

MORE INFORMATION
==================

Steps to Reproduce Behavior

1. Start Microsoft Excel version 5.0.

2. From the File menu, choose New to create a new Excel book.

3. From the Insert menu, choose Macro and then choose Module to create a
 new module in the book.

4. Add the following code to the Excel module:

 Sub ThingOne

 End Sub

 Sub ThingTwo
 ThingOne$ = "hi"
 End Sub

5. Run the macro by choosing Start from the Run menu or by pressing the F5
 key. Excel will pop-up an error dialog:

 Type-declaration character does not match declared data type.

6. Replace the above code with the following code.

 Sub ThingOne

 End Sub

 Sub ThingTwo
 ThingOne = 4
 End Sub

7. Run the macro. Excel will pop-up an error dialog:

 Expected function or variable.

Additional reference words: 1.00 4.00 5.00
KBCategory: IAP
KBSubcategory: IAPVBA

PRB: Sub Name Can't Be Valid Cell Reference in Excel VBA
Article ID: Q113952

The information in this article applies to:

 - Microsoft Visual Basic, Application Edition, version 1.0
 - Microsoft Excel for Windows, version 5.0

SYMPTOMS
========

Certain Sub or Function procedure names may generate an "Invalid Procedure
Name" error in Visual Basic, Applications Edition in Excel even though the
syntax is correct.

CAUSE
=====

When creating new modules or renaming existing modules in Excel, Visual
Basic, Applications Edition rejects any Sub or Function that is a valid
cell reference regardless of whether you are using A1 or R1C1 referencing.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Create a new book in Excel by choosing New from the File menu.

2. Insert a new module by choosing Macro and then Module from the Insert
 menu.

3. Add the following code to the new module:

 Sub C3000

4. When you press the ENTER key, you'll see the error "Invalid procedure
 name." Then the line of code turns red.

Additional reference words: 5.00 1.00
KBCategory:
KBSubcategory: IAPVBA

BUG: VBA FileCopy Updates Destination File's Date & Time Stamp
Article ID: Q113958

The information in this article applies to:

- Microsoft Visual Basic, Applications Edition, version 1.0
- Microsoft Excel, version 5.0
- Microsoft Project, version 4.0

SYMPTOMS
========

The FileCopy statement in Visual Basic, Applications Edition does not
maintain the Date and Time stamp of the source file when the destination
file is copied. Unlike the MS-DOS Copy command and the FileCopy statement
in Visual Basic version 3.0, the time stamp of the destination file shows
the actual time the copy occurs.

WORKAROUND
==========

Because the time stamp placed on the file is based on the current time,
setting the system time to the time stamp of the source file prior to
copying the file establishes the same time stamp on the destination
file. Below is a sample piece of code to copy a file that maintains the
same time stamp:

Sub TestFileCopy()
 Dim datOriginalDateTime As Date
 Dim datSourceTimeStamp As Date

 Const cSourceFile = "C:\AUTOEXEC.BAT"
 Const cDestFile = "C:\AUTOEXEC.OLD"

 ' Obtain Date/Time Stamp of the Source file:
 datSourceTimeStamp = FileDateTime(cSourceFile)

 ' Store Current time in a temporary variable:
 datOriginalDateTime = Now()

 ' Set System time to that of the Source File:
 Date = datSourceTimeStamp
 Time = datSourceTimeStamp

 FileCopy cSourceFile, cDestFile

 ' Restore System time to correct time:
 Date = datOriginalDateTime
 Time = datOriginalDateTime
 MsgBox "Source Date = " & FileDateTime(cSourceFile) & Chr(13) & _
 Chr(10) & "Destination Date = " & FileDateTime(cDestFile)
End Sub

STATUS

======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Excel, or from the File menu, choose New (ALT, F, N) if Excel
 is already running.

2. Insert a New module. From the Insert Menu, choose Macro Module
 (ALT, I, M, M). Module1 is created by default.

3. Insert the following code into Module1:

 Sub TestFileCopy()
 Const cSourceFile = "C:\autoexec.bat"
 Const cDestFile = "C:\autoexec.old"
 FileCopy cSourceFile, cDestFile
 MsgBox "Source Date = " & FileDateTime(cSourceFile) & Chr(13) & _
 Chr(10) & "Destination Date = " & FileDateTime(cDestFile)
 End Sub

4. Run the macro. From the Tools Menu, choose Macro (ALT, T, M).
 From the Macro dialog, select the macro TestFileCopy. Then click the
 Run button.

The time stamps for the Source and Destination files differ. You would
expect them to be the same. Now try the workaround routine, you will
see the Source and Destination files are the same.

Additional reference words: 1.00 buglist1.00
KBCategory:
KBSubcategory: IAPVBA

BUG: VBA Shell Returns Invalid Proc Call Even If App Starts
Article ID: Q114001

This information in this article applies to:

- Microsoft Visual Basic, Applications Edition, version 1.0
- Microsoft Excel, version 5.0
- Microsoft Project, version 4.0

SYMPTOMS
========

The Shell statement can cause a Invalid Procedure Call even though
the Shell statement successfully started the desired application.

WORKAROUND
==========

To work around this bug, turn error trapping on and trap the Invalid
Procedure Call error as in this example:

On Error Resume Next
Shell("C:\WINDOWS\NOTEPAD.EXE")

' Invalid Procedure Call:

If Err <> 5 Then
 ' Insert code to handle other errors here.
 ' Exit if fatal
End if

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic,
Applications Edition, version 1.0 that comes with Microsoft Excel version
5.0 and Microsoft Project version 4.0. We are researching this bug and
will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 1.00 buglist1.00
KBCategory:
KBSubcategory: IAPVBA

"Invalid Data Format" Referencing File that Contains Procedure
Article ID: Q114226
--
The information in this article applies to:

 - Microsoft Visual Basic Programming System, Applications Edition,
 version 1.0
--

SYMPTOMS
========

In a Visual Basic module, when you use the Browse dialog box to reference a
file created in another application that contains a Visual Basic procedure,
you receive the following error message:

 Invalid data format

CAUSE
=====

This is by design. You cannot, for example, reference a Microsoft Excel
workbook file that contains a Visual Basic module, from a Visual Basic
module in a Microsoft Project project file.

WORKAROUND
==========

To run a procedure from a Visual Basic module in one application (App1)
that is contained in a file created by another application (App2), you can
use the methods and properties of the object library exposed by the
application that was used to create the Visual Basic procedure (App2).

For example, to run a macro from a Visual Basic module in Microsoft Excel
that is contained in a Microsoft Project project file, do the following:

1. In a new module in Microsoft Excel, choose References from the Tools
 menu.

2. From the Available References list, select the Microsoft Project 4.0
 Object Library check box, and choose OK.

3. In the new module, enter the following:

 Sub Run_Proj_Macro()
 ' Dimension variable Proj as object type
 Dim Proj As Object
 ' Set Proj equal to Microsoft Project application object
 Set Proj = MSProject.Application
 ' Open project file that contains macro
 ' Note this command is not necessary to run a global macro
 Proj.FileOpen "C:\WINPROJ\PROJECT1.MPP"
 ' Run macro
 ' Replace MACRONAME with the name of the macro you want to run
 ' PROJECT1 and Module1 are not necessary but distinguish

 ' Between multiple macros with the same name
 Proj.Macro "[PROJECT1]Module1!MACRONAME"
 ' Quit Microsoft Project
 Proj.Quit
 End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided "as is" and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the Visual Basic "User's
Guide."

MORE INFORMATION
================

In a Visual Basic module in Microsoft Excel, you can use the Browse dialog
box to reference another workbook file (*.XLS) or an add-in file, (*.XLA)
that contains a Visual Basic procedure.

In a Visual Basic module in Microsoft Project, you can use the Browse
dialog box to reference another project file (*.MPP) that contains a Visual
Basic procedure.

You can reference a toolbar file, (*.TLB) or an object library file (*.OLB)
from a Visual Basic module in either Microsoft Excel or Microsoft Project.

Additional reference words: 1.00 4.00 5.00

How to Dimension a Variable as Name Type
Article ID: Q114287
--
The information in this article applies to:

 - Microsoft Visual Basic Programming System, Applications Edition,
 version 1.0
--

SYMPTOMS
========

In Microsoft Visual Basic Programming System, Applications Edition, if you
declare a variable of Name type in your module, as in the following example

 Dim MyVar as Name

you receive a syntax error when you run the code.

CAUSE
=====

In Microsoft Visual Basic in Microsoft Excel, Name is a reserved keyword
that conflicts with the Name object of the Names collection.

WORKAROUND
==========

To declare a variable of Name type, explicitly reference the object, as in
the following example:

 Dim MyVar as Excel.Name

MORE INFORMATION
================

The Dim statement in Visual Basic, Applications Edition, is used to declare
variables and allocate storage space. The syntax is as follows

 Dim varname As <type>

where <type> is the data type of the variable. This data type can be an
object type, such as Name. An object type is a type of object exposed by an
application through OLE Automation. An example of using the Dim statement
to declare a variable as Name type is as follows:

 Sub List_Names()
 ' Dimension variable MyName as Name type
 Dim MyName As Excel.Name
 ' Display reference for each name in the names collection
 For Each MyName In ActiveWorkbook.Names
 Count = Count + 1
 MsgBox ActiveWorkbook.Names(Count)
 Next MyName
 End Sub

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided "as is" and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the Visual Basic "User's
Guide."

REFERENCES
==========

For more information about the Dim Statement, choose the Search button in
the Visual Basic Reference and type:

 Dim

Additional reference words: 1.00 5.00

Using Square Brackets in a Visual Basic Procedure
Article ID: Q114320
--
The information in this article applies to:

 - Microsoft Visual Basic Programming System, Applications Edition,
 version 1.0
--

SUMMARY
=======

Square brackets ([]) are used in Visual Basic 3.0 so that the contents of
the brackets are ignored when the code is run. This is useful when you are
using OLE Automation statements because the brackets allow a manual
override of the syntax checker.

Microsoft Visual Basic Programming System, Applications Edition also uses a
syntax checker. When you use brackets in your procedure, they are sometimes
removed after you run the procedure. In most cases, this does not cause a
problem. However, if the statement needs to be recompiled, for example, if
you copy the statement that no longer contains the brackets, and paste it
to another location in a module, a syntax error appears when you run the
pasted statement.

In most cases, there is another way to reference an object or method with
the correct syntax without using brackets. The following is an example.

Example

The Microsoft Excel Name object conflicts with a reserved word.

The following statement works correctly in Visual Basic, Applications
Edition:

 Dim xl as [Name]

When you run the procedure that contains this statement, however, the
brackets are removed. To use this statement without brackets, and without
receiving an error message, use the following:

 Dim xl as Excel.Name

MORE INFORMATION
================

In Visual Basic version 3.0, type declaration characters are not allowed in
procedures. However, they are allowed in Visual Basic, Applications
Edition. The following is the required syntax in Visual Basic 3.0:

 Dim Word As Object
 Set Word = CreateObject("Word.Basic")
 MsgBox Word.[GetBookmark$](Word.[BookmarkName$](1))

In Visual Basic, Applications Edition, you can use the following:

 MsgBox = Word.GetBookmark$(Word.BookmarkName$(1))

Note that in this example, the CreateObject function is used to create an
object-linking-and-embedding (OLE) Automation object using the Microsoft
Word for Windows macro language. When you call a function in the Microsoft
Word for Windows macro language, the brackets are generally not required,
as shown in the example above. However, there are at least two functions
that you must enclose in brackets in order to use in a Visual Basic,
Applications Edition macro. These are Language$() and Font$(). The
following is an example of how to use the Language$() function in a Visual
Basic, Applications Edition macro:

 Dim Word As Object
 Set Word = CreateObject("Word.Basic")
 MsgBox Word.[Language$](0)

When you run a Visual Basic, Applications Edition procedure that uses a
Microsoft Word for Windows function and you use the brackets, the brackets
are not removed after you run the commands.

Microsoft provides examples of Visual Basic procedures for illustration
only, without warranty either expressed or implied, including but not
limited to the implied warranties of merchantability and/or fitness for a
particular purpose. This Visual Basic procedure is provided "as is" and
Microsoft does not guarantee that it can be used in all situations.
Microsoft does not support modifications of this procedure to suit customer
requirements for a particular purpose. Note that a line that is preceded by
an apostrophe introduces a comment in the code--comments are provided to
explain what the code is doing at a particular point in the procedure. Note
also that an underscore character (_) indicates that code continues from
one line to the next. You can type lines that contain this character as one
logical line or you can divide the lines of code and include the line
continuation character. For more information about Visual Basic for
Applications programming style, see the "Programming Style in This Manual"
section in the "Document Conventions" section of the Visual Basic "User's
Guide."

Additional reference words: 1.00 5.00 6.00 6.00a w4wmacro wordbasic

BUG: SendKeys Fails to Send Right Brace Character in Excel VBA
Article ID: Q114343
--
The information in this article applies to:

- Visual Basic, Applications Edition, version 1.0
- Microsoft Excel for Windows, version 5.0
- Microsoft Office for Windows, version 4.0

SYMPTOMS
========

The SendKeys command in Visual Basic, Applications Edition in Microsoft
Excel allows you to simulate keystrokes under program control. If a right
brace character is part of the string sent, Visual Basic, Applications
Edition generates a run-time error 5, "Invalid procedure call."

STATUS
======

Microsoft has confirmed this to be a bug in Visual Basic, Applications
Edition that ships with Microsoft Excel version 5.0 and Microsoft Office
version 4.0. We are researching this problem and will post new information
here in here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Excel version 5.0.

2. From the File menu, choose New to create a new Book.

3. From the Insert menu, choose Macro Module.

4. Add the following code to the new module.

 Sub Main ()
 SendKeys "{}}"
 End Sub

5. Click the Tab for Sheet1 at the bottom of the Excel window.

6. From the Tools menu, choose Macro Run; then select the macro 'Main' that
 you just created.

The program will quit and give you error 5.

NOTE: The following equivalent code works in Visual Basic for Windows
Programming System, version 3.0.

Sub Form_Click ()

 SendKeys "{}}"
End Sub

Additional reference words: buglist1.00 1.00 4.00 5.00
KBCategory: IAP
KBSubcategory: IAPVBA

BUG: Is Operator in VBA Incorrectly Evaluates Excel Objects
Article ID: Q114345

The information in this article applies to:

- Microsoft Visual Basic, Applications Edition, version 1.0
- Microsoft Excel, version 5.0

SYMPTOMS
========

Using the Is operator to evaluate whether or not two object variables
reference the same Excel object, incorrectly evaluates to False.

WORKAROUND
==========

Using a property of an object, such as Name, correctly evaluates whether or
not the objects are the same. For example:

 If xlObject1.Name = xlObject2.Name then
 ' Code when the objects refer to our code
 End If

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic,
Applications Edition, version 1.0 that ships with Microsoft Excel version
5.0. We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Excel, or from the File menu, choose New (ALT, F, N) if Excel
 is already running.

2. Insert a New module. From the Insert Menu, choose Macro Module
 (ALT, I, M, M). Module1 is created by default.

3. Insert the following code into Module1:

 Sub TestXLObject()
 dim xlObject as Object
 Worksheets(1).Select
 set XlObject = Selection
 If xlObject Is xlObject then beep
 End sub

4. Run the macro. From the Tools Menu, choose Macro (press ALT, T, M).

 From the Macro dialog, select the macro TestXLObject, and press the Run
 button.

You would expect to hear a beep to indicate expression 'xlObject Is
xlObject' is true, but no beep sounds.

Additional reference words: 1.00 5.00 buglist1.00
KBCategory: IAP
KBSubcategory: IAPVBA

